Skip to main content

Advertisement

Log in

Reversible metallization of SnO2 films under hydrogen and oxygen containing atmospheres

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The adsorption of different gases onto tin oxide films surfaces promotes electrical conductance variations. Films chemiresistive properties depend on the intergranular barrier heights and on the concentration of non-stoichiometric defects that, in the case of tin oxide, are mainly oxygen vacancies. We found that film exposures to an H2-containing atmosphere over 400 °C led to unusual results that cannot be explained resorting to regular interpretations. By means of Raman spectroscopy and XRD characterization, we show that, at high enough temperatures, when films are exposed to hydrogen, the tin dioxide converts into tin monoxide and metallic tin. Then, when films are exposed to air atmosphere, the oxygen diffuses into the grains converting the metallic tin back into tin dioxide. These findings are consistent with electrical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yamazoe N (2005) Toward innovations of gas sensor technology. Sens Actuators B 108:2–14

    Article  Google Scholar 

  2. Gopel W, Schierbaum KD (1995) SnO2 sensors: current status and future prospects. Sens Actuators B 26:1–12

    Article  Google Scholar 

  3. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    Article  Google Scholar 

  4. Cukrov LM, McCormick PG, Galatsis K, Wlodarski W (2001) Gas sensing properties of nanosized tin oxide synthesised by mechanochemical processing. Sens Actuators B 77:491–495

    Article  Google Scholar 

  5. Mad MJ, Morrison R (1989) Chemical sensing with solid state devices, vol 1. Academic Press, San Diego

    Google Scholar 

  6. Romppainen P, Lantto V (1988) The effect of microstructure on the height of potential energy barriers in porous tin dioxide gas sensors. J Appl Phys 63:5159–5165

    Article  Google Scholar 

  7. Maffeis TGG, Owen GT, Malagu C, Martinelli G, Kennedy MK, Kruis FE, Wilks SP (2004) Direct evidence of the dependence of surface state density on the size of SnO2 nanoparticles observed by scanning tunnelling spectroscopy. Surf Sci 550:21–25

    Article  Google Scholar 

  8. Kamp B, Merkle R, Maier J (2001) Chemical diffusion of oxygen in tin dioxide. Sens Actuators B 77:534–542

    Article  Google Scholar 

  9. Ponce MA, Castro MS, Aldao CM (2009) Capacitance and resistance measurements of SnO2 thick-films. J Mater Sci 20:25–32

    Google Scholar 

  10. Maffeıs TGG, Owen GT, Malagu C, Martinelli G, Kennedy MK, Kruis FE, Wilks SP (2004) Direct evidence of the dependence of surface state density on the size of SnO 2 nanoparticles observed by scanning tunnelling spectroscopy. Surf Sci 550(1):21–25

    Article  Google Scholar 

  11. Malagù C, Martinelli G, Ponce MA, Aldao CM (2008) Unpinning of the Fermi level and tunneling in metal oxide semiconductors. Appl Phys Lett 92:162104

    Article  Google Scholar 

  12. I.I.C.f.D. (1998) Data, powder diffraction file database, Newtown Square, EEUU

  13. Sahm T, Gurlo A, Bârsan N, Weimar U (2006) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens Actuators B 118:78–83

    Article  Google Scholar 

  14. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  Google Scholar 

  15. Aldao CM, Schipani F, Ponce MA, Joanni E, Williams FJ (2014) Conductivity in SnO2 polycrystalline thick film gas sensors: tunneling electron transport and oxygen diffusion. Sens Actuators B 193:428–433

    Article  Google Scholar 

  16. Schipani F, Ponce MA, Joanni E, Williams FJ, Aldao CM (2014) Study of the oxygen vacancies changes in SnO2 polycrystalline thick films using impedance and photoemission spectroscopies. J Appl Phys 116:194502

    Article  Google Scholar 

  17. Ponce MA, Castro MS, Aldao CM (2004) Influence of oxygen adsorption and diffusion on the overlapping of intergranular potential barriers in SnO2 thick films. Mater Sci Eng B 111:14–19

    Article  Google Scholar 

  18. Aldao CM, Mirabella DA, Ponce MA, Giberti A, Malagù C (2011) Role of intragrain oxygen diffusion in polycrystalline tin oxide conductivity. J Appl Phys 109:063723

    Article  Google Scholar 

  19. Vijayarangamuthu K, Rath S (2014) Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy. J Alloy Compd 610:706–712

    Article  Google Scholar 

  20. Wang JX, Liu DF, Yan XQ, Yuan HJ, Ci LJ, Zhou ZP, Gao Y, Song L, Liu LF, Zhou WY, Wang G, Xie SS (2004) Growth of SnO2 nanowires with uniform branched structures. Solid State Commun 130:89–94

    Article  Google Scholar 

  21. Ristić M, Ivanda M, Popović S, Musić S (2002) Dependence of nanocrystalline SnO2 particle size on synthesis route. J Non-Cryst Solids 303:270–280

    Article  Google Scholar 

  22. Sangeetha P, Sasirekha V, Ramakrishnan V (2011) Micro-Raman investigation of tin dioxide nanostructured material based on annealing effect. J Raman Spectrosc 42:1634–1639

    Article  Google Scholar 

  23. Sun SH, Meng GW, Zhang GX, Gao T, Geng BY, Zhang LD, Zuo J (2003) Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem Phys Lett 376:103–107

    Article  Google Scholar 

  24. Meier C, Lüttjohann S, Kravets VG, Nienhaus H, Lorke A, Ifeacho P, Wiggers H, Schulz C, Kennedy MK, Kruis FE (2006) Vibrational and defect states in SnOx nanoparticles. J Appl Phys 99:113108

    Article  Google Scholar 

  25. Berengue OM, Simon RA, Chiquito AJ, Dalmaschio CJ, Leite ER, Guerreiro HA, Guimarães FEG (2010) Semiconducting Sn3O4 nanobelts: growth and electronic structure. J Appl Phys 107:033717

    Article  Google Scholar 

  26. Aragón FH, Coaquira JAH, Hidalgo P, da Silva SW, Brito SLM, Gouvêa D, Morais PC (2011) Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy. J Raman Spectrosc 42:1081–1086

    Article  Google Scholar 

  27. Abello L, Bochu B, Gaskov A, Koudryavtseva S, Lucazeau G, Roumyantseva M (1998) Structural Characterization of Nanocrystalline SnO2 by X-Ray and Raman Spectroscopy. J Solid State Chem 135:78–85

    Article  Google Scholar 

  28. Mcguire K, Pan ZW, Wang ZL, Milkie D, Menendez J, Rao AM (2002) Raman studies of semiconducting oxide nanobelts. J Nanosci Nanotechnol 2(5):499–502

    Article  Google Scholar 

  29. Geurts J, Rau S, Richter W, Schmitte FJ (1984) SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies. Thin Solid Films 121:217–225

    Article  Google Scholar 

  30. Arunkumar.PBS, Satyanarayana L, Manorama SV (2012) One-pot hydrothermal synthesis of SnO and SnO2 nanostructures: enhanced H2 sensing attributed to in situ p-n junctions. In: IMCS (ed) The 14th international meeting on chemical sensors, pp 372–375

  31. Sangaletti L, Depero LE, Allieri B, Pioselli F, Comini E, Sberveglieri G, Zocchi M (1998) Oxidation of Sn Thin Films to SnO2. Diffraction Studies. J Mater Res 13:2457–2460

    Article  Google Scholar 

  32. Chen X, Grandbois M (2013) Insitu Raman spectroscopic observation of sequential hydrolysis of stannous chloride to abhurite, hydroromarchite, and romarchite. J Raman Spectrosc 44:501–506

    Article  Google Scholar 

  33. Tharsika T, Haseeb ASMA, Akbar SA, Sabri MFM, Wong YH (2015) Gas sensing properties of zinc stannate (Zn2SnO4) nanowires prepared by carbon assisted thermal evaporation process. J Alloy Compd 618:455–462

    Article  Google Scholar 

  34. Sadek AZ, Choopun S, Wlodarski W, Ippolito SJ, Kalantar-zadeh K (2007) Characterization of ZnO nanobelt-based gas sensor for H 2, NO 2, and hydrocarbon sensing. IEEE Sens J 7(6):919–924

    Article  Google Scholar 

  35. Molloy KC, Quill K, Cunningham D, McArdle P, Higgins T (1989) A reinvestigation of the structures of organotin sulphates and chromates, including the crystal and molecular structure of bis (trimethyltin) sulphate dihydrate. J Chem Soc Dalton Trans 2:267–273

    Article  Google Scholar 

  36. Grover S, Moddel G (2013) Metal single-insulator and multi-insulator diodes for rectenna solar cells. In: Grover S, Moddel G (eds) Rectenna solar cells. Springer, New York

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Desimone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desimone, P.M., Díaz, C.G., Tomba, J.P. et al. Reversible metallization of SnO2 films under hydrogen and oxygen containing atmospheres. J Mater Sci 51, 4451–4461 (2016). https://doi.org/10.1007/s10853-016-9757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9757-2

Keywords