Journal of Materials Science

, Volume 51, Issue 9, pp 4371–4378 | Cite as

Crystallographic orientation relationships and interfaces in laser-processed directionally solidified WC–W2C eutectoid ceramics

Original Paper

Abstract

Crystallographic orientation relationships and interfaces in directionally solidified WC–W2C eutectoids are investigated by electron microscopy and electron back-scattered diffraction. The WC–W2C eutectoids are prepared by a laser surface processing method, which unidirectionally melts and resolidifies ceramic powder substrates. Lamellar-type microstructures are observed in all samples with preferred nominal growth directions of [\( \overline{1} 2\overline{1} 0 \)]WC//[\( \overline{1} 2\overline{1} 0 \)]W2C along the solidification direction. The majority of interface habit planes are found to be (0001)WC//(0001)W2C. The interfaces are found to be semicoherent, with a misfit Burger’s vector of 1/3[\( 2{\bar{1}} {\bar{1}} 0 \)]. An intermediate layer is identified at the interface and is associated with a change in the stacking sequence of the close-packed (0001) tungsten planes.

References

  1. 1.
    Llorca J, Orera V (2006) Directionally solidified eutectic ceramic oxides. Prog Mater Sci 51:711–809CrossRefGoogle Scholar
  2. 2.
    Stubican VS, Bradt RC (1980) Directional solidification of nonoxide eutectics. US Army Research Office ReportGoogle Scholar
  3. 3.
    Pastor JY, Poza P, Llorca J, Peña JI (2001) Mechanical properties of directionally solidified Al2O3-ZrO2(Y2O3) eutectics. Mater Sci Eng A 308:241–249CrossRefGoogle Scholar
  4. 4.
    Larrea A, Orera VM, Merino RI, Peña JI (2005) Microstructure and mechanical properties of Al2O3–YSZ and Al2O3–YAG directionally solidified eutectic plates. J Eur Ceram Soc 25:1419–1429CrossRefGoogle Scholar
  5. 5.
    Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1998) High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. J Mater Sci 33:1217–1225. doi:10.1023/A:1004377626345 CrossRefGoogle Scholar
  6. 6.
    Bogomol I, Nishimura T, Vasylkiv O et al (2009) Microstructure and high-temperature strength of B4C-TiB2 composite prepared by a crucibleless zone melting method. J Alloys Compd 485:677–681CrossRefGoogle Scholar
  7. 7.
    White RM, Kunkle JM, Polotai AV, Dickey EC (2011) Microstructure and hardness scaling in laser-processed B4C–TiB2 eutectic ceramics. J Eur Ceram Soc 31:1227–1232CrossRefGoogle Scholar
  8. 8.
    Gunjishima I, Akashi T, Goto T (2002) Characterization of directionally solidified B4C-TiB2 composites prepared by a floating zone method. Mater Trans 43:712–720CrossRefGoogle Scholar
  9. 9.
    Li W, Tu R, Goto T (2005) Preparation of TiB2-SiC eutectic composite by an arc-melted method and its characterization. Mater Trans 46:2504–2508CrossRefGoogle Scholar
  10. 10.
    Ordanyan SS, Dmitriev AI, Stepanenko EK et al (1987) SiC-TiB2 system—A base of high-hardness wear-resistant materials. Sov Powder Metall Met Ceram 26:375–377Google Scholar
  11. 11.
    Ashbrook RL (1977) Directionally solidified ceramic eutectics. J Am Ceram Soc 60:428–435CrossRefGoogle Scholar
  12. 12.
    Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Trans Metall Soc Aime 236:1129–1142Google Scholar
  13. 13.
    Sorrell CC, Beratan HR, Bradt RC, Stubican VS (1984) Directional solification of (Ti, Zr) carbides-(Ti, Zr) diboride eutectics. J Am Ceram Soc 67:190–194CrossRefGoogle Scholar
  14. 14.
    Deng H, Dickey EC, Lewis N, Road B (2004) Crystallographic characterization and indentation mechanical properties of LaB6-ZrB2 directionally solidified eutectics. J Mater Sci 39:5987–5994. doi:10.1023/B:JMSC.0000041695.40772.56 CrossRefGoogle Scholar
  15. 15.
    White RM, Dickey EC (2011) The effects of residual stress distributions on indentation-induced microcracking in B4C-TiB2 eutectic ceramic composites. J Am Ceram Soc 94:4032–4039CrossRefGoogle Scholar
  16. 16.
    Sorrell CC, Stubican VS, Bradt RC (1986) Mechanical properties of ZrC-ZrB2 and ZrC-TiB2 directionally solidified eutectics. J Am Ceram Soc 69:317–321CrossRefGoogle Scholar
  17. 17.
    Chen WT, Meredith CH, Dickey EC (2015) Growth and microstructure-dependent hardness of directionally solidified WC-W2C eutectoid ceramics. J Am Ceram Soc 98:2191–2196CrossRefGoogle Scholar
  18. 18.
    Kurlov AS, Gusev AI (2006) Tungsten carbides and W-C phase diagram. Inorg Mater 42:121–127CrossRefGoogle Scholar
  19. 19.
    Rudy E, Hoffman JR (1967) Phasengleichgewichte im bereich der kubischen karbidphase im system wol-fram-kohlenstoff. Planseeber, PulvermetallGoogle Scholar
  20. 20.
    Michalski A, Siemiaszko D (2007) Nanocrystalline cemented carbides sintered by the pulse plasma method. Int J Refract Met Hard Mater 25:153–158CrossRefGoogle Scholar
  21. 21.
    Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2008) Binderless WC and WC–VC materials obtained by pulsed electric current sintering. Int J Refract Met Hard Mater 26:41–47CrossRefGoogle Scholar
  22. 22.
    Taimatsu H, Sugiyama S, Kodaira Y (2008) Synthesis of W2C by reactive hot pressing and its mechanical properties. Mater Trans 49:1256–1261CrossRefGoogle Scholar
  23. 23.
    Mambo. Oxford Instruments HKL® (2006) HKL Technology. DenmarkGoogle Scholar
  24. 24.
    Tango. Oxford Instruments HKL® (2006) HKL Technology. DenmarkGoogle Scholar
  25. 25.
    Sang X, Oni AA, Lebeau JM (2014) Atom column indexing : atomic resolution image analysis through a matrix representation. Microsc Microanal 20:1764–1771CrossRefGoogle Scholar
  26. 26.
    DebRoy T, David SA (1995) Physical processes in fusion welding. Rev Mod Phys 67:85–112CrossRefGoogle Scholar
  27. 27.
    Polotai AV, Foreman JF, Dickey EC, Meinert K (2008) Laser surface processing of B4C-TiB2 eutectic. Int J Appl Ceram Technol 5:610–617CrossRefGoogle Scholar
  28. 28.
    Bourban S, Karapatis N, Hofmann H, Kurz W (1997) Solidification microstructure of laser remeled Al2O3-ZrO2 eutectic. Acta Metall 45:5069–5075Google Scholar
  29. 29.
    Kurlov AS, Gusev AI (2013) Tungsten carbide: structure, properties and application in hard metals. Springer, LondonCrossRefGoogle Scholar
  30. 30.
    Tanaka T, Otani S, Ishizawa Y (1988) Floating-zone crystal growth of WC. J Mater Sci 23:665–669. doi:10.1007/BF01174703 CrossRefGoogle Scholar
  31. 31.
    Zhang M, Kelly P, Easton M, Taylor J (2005) Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater 53:1427–1438CrossRefGoogle Scholar
  32. 32.
    Dickey EC, Dravid VP, Nellist PD et al (1998) Three-dimensional atomic structure of NiO-ZrO2(cubic) interfaces. Acta Mater 46:1801–1816CrossRefGoogle Scholar
  33. 33.
    Frageau M, Revcolevschi A (1983) Crystallography of the directionally solidified NiO-CaO eutectic. J Am Ceram Soc 66:C162–C163CrossRefGoogle Scholar
  34. 34.
    Dubois B, Dhalenne G, D’Yvoire F, Revcolevschi A (1986) Crystallography of the directionally solidified NiO-Gd2O3 eutectic. J Am Ceram Soc 69:C6–C8CrossRefGoogle Scholar
  35. 35.
    Serrano-Zabaleta S, Laguna-Bercero MA, Ortega-San-Martín L, Larrea A (2014) Orientation relationships and interfaces in directionally solidified eutectics for solid oxide fuel cell anodes. J Eur Ceram Soc 34:2123–2132CrossRefGoogle Scholar
  36. 36.
    Fecht HJ, Gleiter H (1985) A lock-in model for the atomic structure of interphase boundaries between metals and ionic crystals. Acta Metall 33:557–562CrossRefGoogle Scholar
  37. 37.
    Minford WJ, Bradt RC, Stubican VS (1979) Crystallography and microstructure of directionally solidified oxide eutectics. J Am Ceram Soc 62:154CrossRefGoogle Scholar
  38. 38.
    Hay RS (2007) Orientation relationships between complex low symmetry oxides: geometric criteria and interface structure for yttrium aluminate eutectics. Acta Mater 55:991–1007CrossRefGoogle Scholar
  39. 39.
    Hay RS, Matson LE (1994) Alumina/Yttrium-aluminum garnet crystallographic orientation relationships and interphase boundaries: observations and interpretation by geometric criteria. Acta Metall Mater 39:1981–1994CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations