Skip to main content
Log in

Lead-free piezoelectric ceramics based on (1 − x)BNKLLT–xBCTZ binary solid solutions synthesized by the solid-state combustion technique

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this work is to improve the electrical properties of BNKLLT ceramics with the addition of BCTZ. New binary (1 − x)BNKLLT-xBCTZ lead-free piezoelectric ceramics with different x contents between 0 and 0.10 (step 0.02) were fabricated by the solid-state combustion technique, where glycine was used as a fuel. The influences of x concentration on the phase evolution, morphology, and electrical behavior were investigated. The phase formation exhibited a coexistence of rhombohedral and tetragonal phases in all samples. With the increasing x content, the phase formation was dominated by a higher tetragonality. The average gain size continuously reduced from 1.52 to 0.96 µm when x content was increased. The maximum dielectric temperature (T SA) of these ceramics decreased with the increasing x content. The ferroelectric properties were further weakened with the increasing x content. The MPB region was obtained at x content of around 0.04 producing this sample and showed the highest dielectric constants (ε r = 2720 and ε SA = 6110) and an excellent piezoelectric constant (d 33 = 295 pC/N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rodel J, Jo W, Seifert KTP, Anton EM, Granzow T (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  2. Bai Y, Matousek A, Tofel P, Bijalwan V, Nan B, Hughes H, Button TW (2015) (Ba, Ca)(Zr, Ti)O3 lead-free piezoelectric ceramics-the critical role of processing on properties. J Eur Ceram Soc 35:3445–3456

    Article  Google Scholar 

  3. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition. Phys Solid State 2(11):2651–2654

    Google Scholar 

  4. Li YM, Chen W, Zhou J, Xu Q, Sun HJ, Liao MS (2005) Dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 ferroelectric ceramics. Ceram Int 31(1):139–142

    Article  Google Scholar 

  5. Yang ZP, Hou YT, Pan H, Chang YF (2009) Structure, microstructure and electrical properties of (1 – x − y)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics. J Alloys Compd 480:246–253

    Article  Google Scholar 

  6. Herabut A, Safari AM (1997) Processing and electromechanical properties of (Bi0.5Na0.5)(1−1.5x)LaxTiO3 ceramics. J Am Ceram Soc 80:2954–2958

    Article  Google Scholar 

  7. Zhou CR, Liu XY, Li WZ, Yuan CL, Chen GH (2010) Structure and electrical properties of Bi0.5(Na, K)0.5TiO3-BiGaO3 lead-free piezoelectric ceramics. Curr Appl Phys 10:93–98

    Article  Google Scholar 

  8. Baettig P, Schelle CLF, LeSar RC, Waghmare UV, Spaldin NCA (2005) Theoretical prediction of new high-performance lead-free piezoelectrics. Chem Mater 17:1376–1380

    Article  Google Scholar 

  9. Takenaka T, Maruyama KI, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239

    Article  Google Scholar 

  10. Kounga AB, Zhang ST, Jo W, Granzow TT, Rödel JG (2008) Morphotropic phase boundary in lead-free piezoceramics. Appl Phys Lett 92:222902

    Article  Google Scholar 

  11. Ji WJ, Chen YB, Zhang ST, Yang B, Zhao XN, Wang QJ (2012) Microstructure and electric properties of lead-free 0.8Bi1/2Na1/2TiO3-0.2Bi1/2K1/2TiO3 ceramics. Ceram Int 38:1683–1686

    Article  Google Scholar 

  12. Gou Q, Wu JG, Li AG, Wu B, Xiao DG, Zhu JG (2012) Enhanced d33 value of Bi0.5Na0.5TiO3–(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics. J Alloys Comp 521:4–7

    Article  Google Scholar 

  13. Pan H, Hou YT, Chao XL, Wei LL, Yang ZP (2011) Microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics. Curr Appl Phys 11:888–892

    Article  Google Scholar 

  14. Naderer MC, Schütz DN, Kainz TR, Reichmann K, Mittermayr FR (2012) The formation of secondary phases in Bi0.5Na0.375K0.125TiO3 ceramics. J Euro Ceram Soc 32:2399–2404

    Article  Google Scholar 

  15. Bhupaijit P, Kornphom C, Vittayakorn N, Bongkarn T (2015) Structural, microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics synthesized by the combustion technique. Ceram Int 41:81–86

    Article  Google Scholar 

  16. Kornphom C, Vittayakorn N, Bongkarn T (2016) Low firing temperatures and high ferroelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics synthesized by the combustion technique. Ferroelectric. doi:10.1080/00150193.2015.1070239

    Google Scholar 

  17. Kornphom C, Laowanidwatana A, Bongkarn T (2013) The effects of sintering temperature and content of x on phase formation, microstructure and dielectric properties of (1 − x)(Bi0.4871Na0.4871La0.0172TiO3)–x(BaZr0.05Ti0.95O3) ceramics prepared via the combustion technique. Ceram Int 39:421–426

    Article  Google Scholar 

  18. Sumang R, Vittayakorn N, Bongkarn T (2013) Crystal structure, microstructure and electrical properties of (1 – x − y)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3–yBiFeO3 ceramics near MPB prepared via the combustion technique. Ceram Int 39:409–413

    Article  Google Scholar 

  19. Julphunthong P, Bongkarn T (2014) Phase formation, microstructure and dielectric properties of Bi0.5(Na0.74K0.16Li0.10)0.5TiO3-Ba(Zr0.5Ti0.95)O3 ceramics prepared via combustion technique. Mater Res Innov 18(S2):151–156

  20. Wattanawikkam C, Vittayakorn N, Bongkarn T (2013) Low temperature fabrication of lead-free KNN-LS-BS ceramics via the combustion method. Ceram Int 39:399–403

    Article  Google Scholar 

  21. Razak K, Yip CJ, Sreekantan S (2011) Synthesis of (Bi0.5Na0.5)TiO3 (BNT) and Pr doped BNT using the soft combustion technique and its properties. J Alloys Compd 509:2936–2941

    Article  Google Scholar 

  22. Manoharan SS, Patil KC (1992) Combustion synthesis of metal chromite powders. J Am Ceram Soc 75:1012–1015

    Article  Google Scholar 

  23. Kornphom C, Combustion technique synthesis and characterization of new BNKLLT-BCTZ-NKLNST system ceramics. PhD Dissertation. Naresuan University, Thailand (In progress)

  24. Jo W, Schaab S, Sapper EA, Schmitt L, Kleebe HJ, Bell AJ, Rödel J (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol%BaTiO3. J Appl Phys 110:074106

    Article  Google Scholar 

  25. Dittmer R, Jo W, Daniels J, Schaab S, Rödel J (2011) Relaxor characteristics of morphotropic phase boundary (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 modified with Bi(Zn1/2Ti1/2)O3. J Am Ceram Soc 94:4283–4290

    Article  Google Scholar 

  26. Tian HY, Wang DY, Lin DM, Zeng JT, Kwok KW, Chan HLW (2007) Diffusion phase transition and dielectric characteristics of Bi0.5Na0.5TiO3–Ba(Hf, Ti)O3 lead-free ceramics. Solid State Commun 142:10–14

    Article  Google Scholar 

  27. Chen XY, Wu JG, Cheng XJ, Wu B, Wu WJ, Xiao DQ, Zhu JG (2012) Piezoelectric properties of [Li0.03(K0.48Na0.52)0.97](Nb0.97Sb0.03)O3-(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free piezoelectric ceramics. Curr Appl Phys 12:752–754

    Article  Google Scholar 

  28. Xu Q, Chen M, Chen W, Liu HX, Kim BH, Ahn BK (2008) Effect of CoO additive on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics prepared by the citrate method. Acta Mater 56:642–650

    Article  Google Scholar 

  29. Buessem WR, Cross LE, Goswami AK (1966) Phenomenological theory of high permittivity in fine-grained barium titanate. J Am Ceram Soc 49:33–36

    Article  Google Scholar 

  30. Zhao XM, Chen XM, Wang J, Liang XX, Zhou JP, Liu P (2015) Effects of Ti nonstoichiometry on microstructure, dielectric, ferroelectric and piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06Ti1+xO3 lead-free ceramics. J Ceram Process Res 16:18–23

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Higher Education Research Promotion and National Research University project of Thailand, Office of the Higher Education Commission. The authors wish to thank the Department of Physics, Faculty of Science, Naresuan University for the supporting facilities. Thanks are also due to Mr. Don Hindle for his help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theerachai Bongkarn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornphom, C., Vittayakorn, N. & Bongkarn, T. Lead-free piezoelectric ceramics based on (1 − x)BNKLLT–xBCTZ binary solid solutions synthesized by the solid-state combustion technique. J Mater Sci 51, 4142–4149 (2016). https://doi.org/10.1007/s10853-016-9737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9737-6

Keywords

Navigation