Skip to main content
Log in

High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A systematic study on the thermal properties, deformation behaviors, and thermal workability of Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass (BMG) was conducted in the supercooled liquid region (SLR) with strain rates ranging from 2.5 × 10−4 to 5 × 10−3 s−1. The strain-rate jump experimental results show that the homogeneous deformation behavior transforms from non-Newtonian flow to Newtonian flow with decreasing strain rate as well as elevating temperature. In the framework of the Kissinger and free-volume model, this phenomenon can be explained by the transition state theory. The values of the activation volume and activation energy of the BMG are obtained, which are consistent with other BMGs. The optimum domain for thermal workability of the metallic glass has been located by the power dissipation efficiency map where the power dissipation efficiency is larger than 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Greer AL (1995) Metallic glasses. Science 267:1947–1953

    Article  Google Scholar 

  2. Chen HS (1976) Ductile-brittle transition in metallic glasses. Mater Sci Eng 26:79–82

    Article  Google Scholar 

  3. Lu J, Ravichandran G, Johnson WL (2003) Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater 51:3429–3442

    Article  Google Scholar 

  4. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306

    Article  Google Scholar 

  5. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R 44:45–89

    Article  Google Scholar 

  6. Qiao JC, Pelletier JM (2014) Dynamic mechanical relaxation in bulk metallic glasses: a review. J Mater Sci Technol 30:523–545

    Article  Google Scholar 

  7. Wang Q, Pelletier JM, Xu H, Xia L, Tan XH, Dong YD (2005) The dynamic shear response of the Zr base bulk metallic glass around the calorimetric glass transition temperature. J Mater Sci 40:4795–4799. doi:10.1007/s10853-005-2016-6

    Article  Google Scholar 

  8. Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55:4067–4109

    Article  Google Scholar 

  9. Tao M, Chokshi AH, Conner RD, Ravichandran G, Johnson WL (2010) Deformation and crystallization of Zr-based amorphous alloys in homogeneous flow regime. J Mater Res 25:1137–1148

    Article  Google Scholar 

  10. Kawamura K, Nakamura T, Inoue A (1998) Superplasticity in Pd40Ni40P20 metallic glass. Scr Mater 39:301–306

    Article  Google Scholar 

  11. Yang Y, Liu CT (2012) Size effect on stability of shear-band propagation in bulk metallic glasses: an overview. J Mater Sci 47:55–67. doi:10.1007/s10853-011-5915-8

    Article  Google Scholar 

  12. Chen G, Ferry M (2006) Some aspects of the fracture behavior of Mg65Cu25Y10 bulk metallic glass under room-temperature bending. J Mater Sci 41:4643–4648. doi:10.1007/s10853-006-0059-y

    Article  Google Scholar 

  13. El-Hadek MA, Kassem M (2009) Failure behavior of CuTiZr-based bulk metallic glass alloys. J Mater Sci 44:1127–1136. doi:10.1007/s10853-008-3194-9

    Article  Google Scholar 

  14. Zeng XR, Xie SH, Hu Q, Fu DJ, Qian HX, Fu MW (2011) Influence of melt temperature on the compressive plasticity of a ZrCuNiAlNb bulk metallic glass. J Mater Sci 46:951–956. doi:10.1007/s10853-010-4839-z

    Article  Google Scholar 

  15. Heggen M, Spaepen F, Fererbacher M (2005) Creation and annihilation of free volume during homogeneous flow of a mealllic glass. J Appl Phys 97:033506

    Article  Google Scholar 

  16. Chiang CL, Chu JP, Lo CT, Nieh TG, Wang ZX, Wang WH (2004) Homogeneous plastic deformation in a Cu-based bulk amorphous alloy. Intermetallics 12:1057–1061

    Article  Google Scholar 

  17. Kim WJ, Sa YK, Lee JB, Jeong HG (2006) Superplastic deformation and crystallization behavior of Cu54Ni6Zr22Ti18 metallic-glass sheet. Intermetallics 14:1391–1396

    Article  Google Scholar 

  18. Ranganathan S, Von Heimendahl M (1981) The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci 16:2401–2404. doi:10.1007/BF01113575

    Article  Google Scholar 

  19. Lee KS, Lee YS (2012) High-temperature deformation and crystallization behavior of a Cu36Zr48Al8Ag8 bulk metallic glass. J Mater Sci 47:2472–2478. doi:10.1007/s10853-011-6070-y

    Article  Google Scholar 

  20. Cui J, Li JS, Wang J, Kou HC, Qiao JC, Gracier S, Blandin JJ (2014) Rheological behavior of CuZr-based metallic glass in the supercooled liquid region. J Alloys Compd 592:189–195

    Article  Google Scholar 

  21. Gun B, Laws KJ, Ferry M (2007) Elevated temperature flow behavior of a Mg-based metallic glass. Mater Sci Eng A 471:130–134

    Article  Google Scholar 

  22. Fu XL, Tan MJ, Wang YS, Jarfors AEW, Gupta M (2013) Deformation behavior of Mg67Zn28Ca5 metallic glass at near supercooled liquid region. J Alloys Compd 549:100–104

    Article  Google Scholar 

  23. Chu JP, Chiang CL, Wijaya H, Huang RT, Wu CW, Zhang B, Wang WH, Nieh TG (2006) Compressive deformation of a bulk Ce-based metallic glass. Scr Mater 55:227–230

    Article  Google Scholar 

  24. Qiao JC, Pelltier JM, Blandin JJ, Gravier S (2013) High temperature deformation in a lanthanum based bulk metallic glass showing a pronounced secondary relaxation. Mater Sci Eng A 586:57–61

    Article  Google Scholar 

  25. Yu PF, Feng SD, Xu GS, Guo XL, Wang YY, Zhao W, Qi L, Li G, Liaw PK, Liu RP (2014) Room-temperature creep resistance of Co-based metallic glass. Scr Mater 90–91:45–48

    Google Scholar 

  26. Qiao JC, Wang YJ, Pelletier JM, Keer LM, Fine ME, Yao Y (2015) Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass. Acta Mater 98:43–50

    Article  Google Scholar 

  27. Mei JN, Soubeyroux JL, Blandin JJ, Li JS, Kou HC, Fu HZ, Zhou L (2011) Homogeneous deformation of Ti41.5Cu37.5Ni7.5Hf5Sn5Si1 bulk metallic glass in the supercooled liquid region. Intermetallics 19:48–53

    Article  Google Scholar 

  28. Bletry M, Guyo P, Brechet Y, Blandin JJ, Soubeyroux JL (2004) Homogeneous deformation of bulk metallic glasses in the super-cooled liquid state. Mater Sci Eng A 387–389:1005–1011

    Article  Google Scholar 

  29. Bletry M, Guyot P, Blandin JJ, Soubeyroux JL (2006) Free volume model: high-temperature deformation of a Zr-based bulk metallic glass. Acta Mater 54:1257–1263

    Article  Google Scholar 

  30. Hajilaoui K, Yousfi MA, Tourki Z, Vaughan G, Yavari AR (2010) On the free volume kinetics during isochronal structural relaxation of Pd-based metallic glass: effect of temperature and deformation. J Mater Sci 45:3344–3349. doi:10.1007/s10853-010-4355-1

    Article  Google Scholar 

  31. Park ES, Kim DH, Kim HJ, Bae JC, Huh MY (2013) Plastic stress-strain behavior of a Zr-based bulk metallic glass at high strain rates in the supercooled liquid region. Mater Sci Eng A 574:54–59

    Article  Google Scholar 

  32. Wang XY, Deng L, Tang N, Jin JS (2014) Size effect on flow behavior of a Zr55Al10Ni5Cu30 bulk metallic glass in supercooled liquid state. Mater Trans A 45A:3505–3511

    Article  Google Scholar 

  33. Li N, Xu XN, Zheng ZZ, Liu L (2014) Enhanced formability of a Zr-based metallic glass in a supercooled liquid state by vibrational loading. Acta Mater 65:400–411

    Article  Google Scholar 

  34. Fu XL, Tan MJ, Chen Y, Jarfors AEW, Gupta M, Shek CH (2015) High temperature deformation behavior of Mg67Zn28Ca5 metallic glass and its composites. Mater Sci Eng A 621:1–7

    Article  Google Scholar 

  35. Ge YN, Song WB, Wang XF, Luo ZC, Li W, Lin JG (2010) Temperature and strain rate dependence of deformation behavior of Zr65Al7.5Ni10Cu17.5. Mater Chem Phys 124:25–28

    Article  Google Scholar 

  36. Schroers J (2010) Processing of bulk metallic glass. Adv Mater 22:1566

    Article  Google Scholar 

  37. Ichitsubo T, Matsubara E, Yamamoto T, Chen HS, Nishiyama N, Saida J, Anazawa K (2005) Microstructure of fragile metallic glasses inferred from ultrasound-accelerating crystallization in Pd-based metallic glass. Phys Rev Lett 95:245501

    Article  Google Scholar 

  38. Ye JC, Lu J, Liu CT, Wang Q, Yang Y (2010) Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater 9:619

    Article  Google Scholar 

  39. Saotome Y, Itoh K, Zhang T, Inoue A (2001) Superplastic nanoforming of Pd-based amorphous alloy. Scr Mater 44:1541–1545

    Article  Google Scholar 

  40. Saotome Y, Imai K, Schioda S, Shimizu S, Zhang T, Inoue A (2002) The micro-nanoformability of Pt-based metallic glass and the nanoforming of three dimensional structures. Intermetallics 10:1241–1247

    Article  Google Scholar 

  41. Saotome Y, Noguchi Y, Zhang T, Inoue A (2004) The micro-nanoformaability of Pt-based metallic glass and the nanoforming of three dimensional structures. Mater Sci Eng A 375–377:389–393

    Article  Google Scholar 

  42. Marandi K, Thamburaja P, Shim VPW (2014) Constitutive description of bulk metallic glass composites at high homologous temperatures. Mech Mater 75:151–164

    Article  Google Scholar 

  43. Cao PH, Lin X, Park HS (2014) Strain-rate and temperature dependence of yield stress of amorphous solids via a self-learning meta basin escape algorithm. J Mech Phys Solids 68:239–250

    Article  Google Scholar 

  44. Vincent S, Murty BS, Kramer MJ, Bhatt J (2015) Micro and nano indentation studies on Zr60Cu10Al15Ni15 bulk metallic glass. Mater Des 65:98–103

    Article  Google Scholar 

  45. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25:407–415

    Article  Google Scholar 

  46. Jun HJ, Lee KS, Yoon SC, Kim HS, Chang YW (2010) Finite-element analysis for high-temperature deformation of bulk metallic glasses in a supercooled liquid region based on the free volume constitutive model. Acta Mater 58:4267–4280

    Article  Google Scholar 

  47. Gravier S, Kapelski G, Suery M (2012) Thermoplastic forming of bulk metallic glasses. Int J Appl Glass Sci 3:180–187

    Article  Google Scholar 

  48. Qiao JC, Pelletier JM (2012) Dynamic mechanical analysis in a La-based bulk metallic glasses: secondary (β) and (α) relaxation. J Appl Phys 112:083528

    Article  Google Scholar 

  49. Reger-Leonhard A, Heilmaier M, Eckert J (2000) Newtonian flow of Zr55Cu30Al10Ni5 bulk metallic glass alloys. Scr Mater 43:459–464

    Article  Google Scholar 

  50. Kawamura Y, Itoi T, Nakamura T, Inoue A (2001) Superplasticity in Fe-based metallic glass with wide supercooled liquid region. Mater Sci Eng A 305–306:735–739

    Article  Google Scholar 

  51. Kawamura Y, Nakamura T, Kato H, Mano H, Inoue A (2001) Newtonian and non-Newtonian viscosity of viscosity of supercooled liquid in metallic glasses. Mater Sci Eng A 304–306:674–678

    Article  Google Scholar 

  52. Lee KS, Eckert J, Chang YW (2007) Load relaxation behavior of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J Non-Cryst Solids 353:2515–2520

    Article  Google Scholar 

  53. Lee KS, Chang YW (2005) Extrusion formability and deformation behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass in an undercooled liquid state after rapid heating. Mater Sci Eng A 399:238–243

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to acknowledge experimental support by Professor J.J. Blandin and Dr. S. Gravier (INP-Grenoble). This work was supported by the National Natural Science Foundation of China (Nos. 51401192; 51301136; 11572249), the Fundamental Research Funds for the Central Universities (Nos. 3102015ZY027; 3102015BJ(II)JGZ019), the Aeronautical Science Foundation of China (N2014KC0068; 2015ZF53072), and Space Foundation of China N2014KC0073.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. C. Qiao or Y. Yao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z.F., Qiao, J.C., Pelletier, J.M. et al. High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass. J Mater Sci 51, 4079–4087 (2016). https://doi.org/10.1007/s10853-016-9729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9729-6

Keywords

Navigation