Skip to main content
Log in

Domain structure and polarization reversal in ferroelectric lanthanum-modified lead titanate ceramics investigated by piezoresponse force microscopy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the ferroelectric domain structure of (Pb0.79La0.21)TiO3 transparent ceramics and its response to an applied electric field were investigated by piezoresponse force microscopy (PFM). A qualitative three-dimensional reconstruction of the domains by PFM measurements revealed that the domain structure consists in stripes in two size scales (micro and nanometer) separated by 90° domain walls coexisting with 180° domains. While the nanoscale 90° domains were found arranged in organized structures, (e.g., lamellas, herringbones, and other unusual configurations), the 180° domains form a “labyrinth” structure, typical of ferroelectrics with a degree of disorder. Local application of an electric field reveals different coercive voltages to reorient 180° and the two types of 90° domains and the appearance of a different nanoscale 90° domain structure after poling. While the labyrinth structure is destroyed with relative low voltages, the created 90° domains structure persists, avoiding the formation of a single-domain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arlt G (1990) Twinning in ferroelectric and ferroelastic ceramics: stress relief. J Mater Sci 25:2655–2666

    Article  Google Scholar 

  2. Arlt G, Sasko P (1980) Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J Appl Phys 51:4956–4960

    Article  Google Scholar 

  3. Gruverman A, Auciello O, Tokumoto H (1998) Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu Rev Mater Sci 28:101–123

    Article  Google Scholar 

  4. Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647

    Article  Google Scholar 

  5. Gruverman A, Kalinin SV (2006) Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J Mater Sci 41:107–116

    Article  Google Scholar 

  6. Ivry Y, Chu DP, Durkan C (2010) Bundles of polytwins as meta-elastic domains in the thin polycrystalline simple multi-ferroic system PZT. Nanotechnology 21:065702

    Article  Google Scholar 

  7. McGilly LJ, Schilling A, Gregg JM (2010) Domain bundle boundaries in single crystal BaTiO3 lamellae: searching for naturally forming dipole flux-closure/quadrupole chains. Nano Lett 10:4200–4205

    Article  Google Scholar 

  8. Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ (2010) Local polarization dynamics in ferroelectric materials. Rep Prog Phys 73:056502

    Article  Google Scholar 

  9. Gruverman A, Rodriguez BJ, Dehoff C et al (2005) Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl Phys Lett 87:082902

    Article  Google Scholar 

  10. Gruverman A, Wu D, Fan H-J et al (2008) Vortex ferroelectric domains. J Phys 20:342201

    Google Scholar 

  11. Kalinin SV, Rodriguez BJ, Jesse S et al (2006) Vector piezoresponse force microscopy. Microsc Microanal 12:206–220

    Article  Google Scholar 

  12. Harnagea C, Pignolet A, Alexe M, Hesse D (2002) Piezoresponse scanning force microscopy: what quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films. Integr Ferroelectr 44:113–124

    Article  Google Scholar 

  13. Iijima K, Takayama R, Tomita Y, Ueda I (1986) Epitaxial growth and the crystallographic, dielectric, and pyroelectric properties of lanthanum-modified lead titanate thin films. J Appl Phys 60:2914–2919

    Article  Google Scholar 

  14. Zhao Q, Liu Y, Shi W et al (1996) Nonlinear optical properties of lanthanum doped lead titanate thin film using Z-scan technique. Appl Phys Lett 69:458–459

    Article  Google Scholar 

  15. Londono FA, Eiras JA, Garcia D (2012) Optical and electro-optical properties of (Pb, La)TiO3 transparent ceramics. Opt Mater 34:1310–1313

    Article  Google Scholar 

  16. Londono FA, Eiras JA, Garcia D (2012) Optical and electro-optical characteristics of hot-pressing (Pb1−x La x )TiO3 ferroelectric ceramics. Bol Soc Esp Cerám Vidr 51:353–358

    Article  Google Scholar 

  17. Yamamoto T, Sakamoto J, Saito M, Niori H (2000) Domain structures of PbTiO3 single crystal and La-modified PbTiO3 thin film by kelvin force microscope. In: Proceedings of the ISAF 2000. 12th IEEE international symposium on aplication on ferroelectrics, vol. 2, pp 975–978

  18. Liu H, Gong X, Liang J, et al (2006) The domain structure and pyroelectric properties of (111) preferred oriented PLT thin films prepared by RF magnetron sputtering. In: Proceedings of the ISAF 2006. 15th IEEE international symposium on the applications of ferroelectrics, pp 299–302

  19. Shvartsman VV, Pertsev NA, Herrero JM et al (2005) Nonlinear local piezoelectric deformation in ferroelectric thin films studied by scanning force microscopy. J Appl Phys 97:104105

    Article  Google Scholar 

  20. Poyato R, Calzada ML, Shvartsman VV et al (2004) Direct characterization of nanoscale domain switching and local piezoelectric loops of (Pb, La)TiO3 thin films by piezoresponse force microscopy. Appl Phys A 81:1207–1212

    Article  Google Scholar 

  21. Dai X, Xu Z, Viehland D (1996) Normal to relaxor ferroelectric transformations in lanthanum-modified tetragonal-structured lead zirconate titanate ceramics. J Appl Phys 79:1021–1026

    Article  Google Scholar 

  22. Randall CA, Rossetti GA, Cao W (1993) Spatial variations of polarization in ferroelectrics and related materials. Ferroelectrics 150:163–169

    Article  Google Scholar 

  23. Rossetti GA, Cao W, Randall CA (1994) Microstructural characteristics and diffuse phase transition behavior of lanthanum-modified lead titanate. Ferroelectrics 158:343–350

    Article  Google Scholar 

  24. Bastos WB (2011) Domínios ferroelétricos em cerâmicas e materiais nanoestruturados: Investigação por microscopia de piezoresposta. PhD Dissertation, Universidade Federal de São Carlos

  25. Shvartsman VV, Dkhil B, Kholkin AL (2013) Mesoscale domains and nature of the relaxor state by piezoresponse force microscopy. Annu Rev Mater Res 43:423–449

    Article  Google Scholar 

  26. Shvartsman VV, Kholkin AL (2007) Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals. J Appl Phys 101:064108

    Article  Google Scholar 

  27. Zhao KY, Ruan W, Zeng HR et al (2014) Domain dynamics of La-doped PMN-PT transparent ceramics studied by piezoresponse force microscope. Appl Surf Sci 293:366–370

    Article  Google Scholar 

  28. Zhao KY, Zhao W, Zeng HR et al (2015) Tip-bias-induced domain evolution in PMN–PT transparent ceramics via piezoresponse force microscopy. Appl Surf Sci 337:125–129

    Article  Google Scholar 

  29. Bai F, Li J, Viehland D (2005) Domain engineered states over various length scales in (001)-oriented Pb(Mg1/3Nb2/3)O3−x%PbTiO3 crystals: electrical history dependence of hierarchal domains. J Appl Phys 97:054103

    Article  Google Scholar 

  30. Moreira EN (1996) Transição de fase difusa e comportamento relaxor em materiais ferroelétricos cerâmicos. PhD Dissertation, Universidade Federal de São Carlos

  31. DeVries RC, Burke JE (1957) Microstructure of barium titanate ceramics. J Am Ceram Soc 40:200–206

    Article  Google Scholar 

  32. Lehnen P, Dec J, Kleemann W (2000) Ferroelectric domain structures of PbTiO3 studied by scanning force microscopy. J Phys D Appl Phys 33:1932–1936

    Article  Google Scholar 

  33. Rossetti GA, Khachaturyan AG, Akcay G, Ni Y (2008) Ferroelectric solid solutions with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J Appl Phys 103:114113

    Article  Google Scholar 

  34. Ishibashi Y, Iwata M, Salje E (2005) Polarization reversals in the presence of 90° domain walls. Jpn J Appl Phys 44:7512–7517

    Article  Google Scholar 

  35. Catalan G, Seidel J, Ramesh R, Scott JF (2012) Domain wall nanoelectronics. Rev Mod Phys 84:119–156

    Article  Google Scholar 

  36. Meyer B, Vanderbilt D (2002) Ab initio study of ferroelectric domain walls in PbTiO3. Phys Rev B 65:104111

    Article  Google Scholar 

  37. Feigl L, Yudin P, Stolichnov I et al (2014) Controlled stripes of ultrafine ferroelectric domains. Nat Commun 5:4677

    Article  Google Scholar 

  38. Freitas VF, Protzek OA, Montoro LA et al (2013) A phenomenological model for ferroelectric domain walls and its implications for BiFeO3–PbTiO3 multiferroic compounds. J Mater Chem C 2:364–372

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr. Francisco J. Picon for the technical assistance, and CAPES, CNPq, and FAPESP (#2008/04025-0 and #2013/03118-2) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Marino Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.M., Londono, F.A., Garcia, D. et al. Domain structure and polarization reversal in ferroelectric lanthanum-modified lead titanate ceramics investigated by piezoresponse force microscopy. J Mater Sci 51, 4061–4069 (2016). https://doi.org/10.1007/s10853-016-9726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9726-9

Keywords

Navigation