Journal of Materials Science

, Volume 52, Issue 7, pp 3719–3740 | Cite as

Thermophysical and transport properties of blends of an ether-derivatized imidazolium ionic liquid and a Li+-based solvate ionic liquid

  • Yanni Wang
  • Michael C. Turk
  • Malavarayan Sankarasubramanian
  • Anirudh Srivatsa
  • Dipankar Roy
  • Sitaraman Krishnan
Batteries and Supercapacitors


The ‘solvate’ ionic liquid (IL), comprising of a 1:1 complex of lithium bis(trifluoromethanesulfonyl)amide (LiTf2N) and tetraglyme (G4), denoted herein by [Li(G4)][Tf2N], is promising as a relatively nonvolatile, nonflammable, and safer electrolyte for lithium-ion batteries. It, however, suffers from the drawback of low ionic conductivity compared with the conventional organic carbonate electrolytes. We report herein the enhancement in the thermal and transport properties of [Li(G4)][Tf2N] by blending it with an ether-derivatized imidazolium IL, namely 1-(2-methoxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, [mEtMeIm][Tf2N]. The volumetric and transport properties of [mEtMeIm][Tf2N], and its blends with [Li(G4)][Tf2N], were investigated at temperatures in the range of 10–85 °C using oscillating U-tube densitometry, cone and plate viscometry, and electrochemical impedance spectroscopy. The addition of [mEtMeIm][Tf2N] to [Li(G4)][Tf2N] lowered the viscosity and increased the ionic conductivity of the blends. The blends also exhibited improved thermal stability in thermogravimetry experiments. Notwithstanding the complex intermolecular interactions existing in the mixture of the [mEtMeIm][Tf2N], LiTf2N, and G4, the density, viscosity, and conductivity data could be modeled assuming the blend to be a simple binary mixture of [Li(G4)][Tf2N] and [mEtMeIm][Tf2N], instead of a ternary mixture of [mEtMeIm][Tf2N], LiTf2N, and G4. The addition of unchelated LiTf2N to [mEtMeIm][Tf2N] resulted in a decrease in ionic conductivity at all temperatures of measurement. However, when LiTf2N was added as a 1:1 complex with G4, the conductivity was higher, at the same molar concentration of LiTf2N. The implications of these results are discussed in view of developing thermally and chemically stable IL-based electrolytes for Li ion batteries, especially for operation at elevated temperatures.


Ionic Liquid Ionic Conductivity Online Supplementary Material Excess Molar Volume Lithium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research made use of facilities at the Center for Advanced Materials Processing at Clarkson University, which is supported by the New York State Office of Science, Technology, and Academic Research.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10853_2016_735_MOESM1_ESM.docx (836 kb)
Supplementary material 1 (DOCX 836 kb)


  1. 1.
    Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929. doi: 10.1016/j.jpowsour.2010.06.060 CrossRefGoogle Scholar
  2. 2.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418. doi: 10.1021/cr030203g CrossRefGoogle Scholar
  3. 3.
    Rock SE, Wu L, Crain DJ, Krishnan S, Roy D (2013) Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. ACS Appl Mater Interfaces 5:2075–2084. doi: 10.1021/am302921r CrossRefGoogle Scholar
  4. 4.
    Hu L, Xu K (2014) Nonflammable electrolyte enhances battery safety. Proc Natl Acad Sci 111:3205–3206. doi: 10.1073/pnas.1401033111 CrossRefGoogle Scholar
  5. 5.
    Wilken S, Xiong S, Scheers J, Jacobsson P, Johansson P (2015) Ionic liquids in lithium battery electrolytes: composition versus safety and physical properties. J Power Sources 275:935–942. doi: 10.1016/j.jpowsour.2014.11.071 CrossRefGoogle Scholar
  6. 6.
    Bhatt MD, O’Dwyer C (2015) Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 17:4799–4844. doi: 10.1039/C4CP05552G CrossRefGoogle Scholar
  7. 7.
    Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503–11618. doi: 10.1021/cr500003w CrossRefGoogle Scholar
  8. 8.
    Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194:601–609. doi: 10.1016/j.jpowsour.2009.06.089 CrossRefGoogle Scholar
  9. 9.
    Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580. doi: 10.1016/j.electacta.2006.03.016 CrossRefGoogle Scholar
  10. 10.
    Shin J-H, Henderson WA, Passerini S (2003) Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5:1016–1020. doi: 10.1016/j.elecom.2003.09.017 CrossRefGoogle Scholar
  11. 11.
    Moosbauer D, Zugmann S, Amereller M, Gores HJ (2010) Effect of ionic liquids as additives on lithium electrolytes: conductivity, electrochemical stability, and aluminum corrosion. J Chem Eng Data 55:1794–1798. doi: 10.1021/je900867m CrossRefGoogle Scholar
  12. 12.
    Rath T, Kundu PP (2015) Reduced graphene oxide paper based nanocomposite materials for flexible supercapacitors. RSC Adv 5:26666–26674. doi: 10.1039/c5ra00563a CrossRefGoogle Scholar
  13. 13.
    McIntosh LD, Kubo T, Lodge TP (2014) Morphology, modulus, and conductivity of a triblock terpolymer/ionic liquid electrolyte membrane. Macromolecules 47:1090–1098. doi: 10.1021/ma4022373 CrossRefGoogle Scholar
  14. 14.
    Austen Angell C, Ansari Y, Zhao Z (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27. doi: 10.1039/C1FD00112D CrossRefGoogle Scholar
  15. 15.
    Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2012) Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B 116:11323–11331. doi: 10.1021/jp307378j CrossRefGoogle Scholar
  16. 16.
    Mandai T, Yoshida K, Ueno K, Dokko K, Watanabe M (2014) Criteria for solvate ionic liquids. Phys Chem Chem Phys 16:8761–8772. doi: 10.1039/C4CP00461B CrossRefGoogle Scholar
  17. 17.
    Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115:18384–18394. doi: 10.1021/jp206881t CrossRefGoogle Scholar
  18. 18.
    Zhang C, Ueno K, Yamazaki A, Yoshida K, Moon H, Mandai T, Umebayashi Y, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl) amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J Phys Chem B 118:5144–5153. doi: 10.1021/jp501319e CrossRefGoogle Scholar
  19. 19.
    Tsuzuki S, Shinoda W, Matsugami M, Umebayashi Y, Ueno K, Mandai T, Seki S, Dokko K, Watanabe M (2015) Structures of [Li(glyme)]+ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Phys Chem Chem Phys 17:126–129. doi: 10.1039/C4CP04718D CrossRefGoogle Scholar
  20. 20.
    Zhang C, Yamazaki A, Murai J, Park J-W, Mandai T, Ueno K, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids, Part 2: importance of solvate-structure stability for electrolytes of lithium batteries. J Phys Chem C 118:17362–17373. doi: 10.1021/jp504099q CrossRefGoogle Scholar
  21. 21.
    Freemantle M (2010) An introduction to ionic liquids. RSC Publishing, CambridgeGoogle Scholar
  22. 22.
    Pitawala J, Martinelli A, Johansson P, Jacobsson P, Matic A (2015) Coordination and interactions in a Li-salt doped ionic liquid. J Non-Cryst Solids 407:318–323. doi: 10.1016/j.jnoncrysol.2014.08.043 CrossRefGoogle Scholar
  23. 23.
    Umecky T, Suga K, Masaki E, Takamuku T, Makino T, Kanakubo M (2015) Solvation structure and dynamics of Li+ in Lewis-basic ionic liquid of 1-octyl-4-aza-1-azoniabicyclo[2.2.2]octane bis(trifluoromethanesulfonyl)amide. J Mol Liq 209:557–562. doi: 10.1016/j.molliq.2015.06.006 CrossRefGoogle Scholar
  24. 24.
    Menne S, Vogl T, Balducci A (2014) Lithium coordination in protic ionic liquids. Phys Chem Chem Phys 16:5485–5489. doi: 10.1039/C3CP55183K CrossRefGoogle Scholar
  25. 25.
    Angenendt K, Johansson P (2011) Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations. J Phys Chem B 115:7808–7813. doi: 10.1021/jp2036108 CrossRefGoogle Scholar
  26. 26.
    Lassegues J-C, Grondin J, Talaga D (2006) Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids. Phys Chem Chem Phys 8:5629–5632. doi: 10.1039/B615127B CrossRefGoogle Scholar
  27. 27.
    Johansson P, Gejji SP, Tegenfeldt J, Lindgren J (1996) Local coordination and conformation in polyether electrolytes: geometries of M-triglyme complexes (M = Li, Na, K, Mg and Ca) from ab initio molecular orbital calculations. Solid State Ionics 86:297–302. doi: 10.1016/0167-2738(96)00129-4 CrossRefGoogle Scholar
  28. 28.
    Johansson P, Tegenfeldt J, Lindgren J (1999) Modelling amorphous lithium salt–PEO polymer electrolytes: ab initio calculations of lithium ion–tetra-, penta- and hexaglyme complexes. Polymer 40:4399–4406. doi: 10.1016/S0032-3861(98)00676-4 CrossRefGoogle Scholar
  29. 29.
    Johansson P (2001) First principles modelling of amorphous polymer electrolytes: Li+–PEO, Li+–PEI, and Li+–PES complexes. Polymer 42:4367–4373. doi: 10.1016/S0032-3861(00)00731-X CrossRefGoogle Scholar
  30. 30.
    Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. J Electrochem Soc 151:A209–A215. doi: 10.1149/1.1635384 CrossRefGoogle Scholar
  31. 31.
    Aguilera L, Xiong S, Scheers J, Matic A (2015) A structural study of LiTFSI–tetraglyme mixtures: from diluted solutions to solvated ionic liquids. J Mol Liq Part B 210:238–242. doi: 10.1016/j.molliq.2015.04.053 CrossRefGoogle Scholar
  32. 32.
    Kashyap HK, Hettige JJ, Annapureddy HVR, Margulis CJ (2012) SAXS anti-peaks reveal the length-scales of dual positive–negative and polar–apolar ordering in room-temperature ionic liquids. Chem Commun 48:5103–5105. doi: 10.1039/C2CC30609C CrossRefGoogle Scholar
  33. 33.
    Ueno K, Tatara R, Tsuzuki S, Saito S, Doi H, Yoshida K, Mandai T, Matsugami M, Umebayashi Y, Dokko K, Watanabe M (2015) Li+ solvation in glyme-Li salt solvate ionic liquids. Phys Chem Chem Phys 17:8248–8257. doi: 10.1039/C4CP05943C CrossRefGoogle Scholar
  34. 34.
    Nicolau BG, Sturlaugson A, Fruchey K, Ribeiro MCC, Fayer MD (2010) Room temperature ionic liquid–lithium salt mixtures: optical Kerr effect dynamical measurements. J Phys Chem B 114:8350–8356. doi: 10.1021/jp103810r CrossRefGoogle Scholar
  35. 35.
    Wu L, Venkatanarayananan RI, Shi X, Roy D, Krishnan S (2014) Glass transition, viscosity, and conductivity correlations in solutions of lithium salts in PEGylated imidazolium ionic liquids. J Mol Liq 198:398–408. doi: 10.1016/j.molliq.2014.07.031 CrossRefGoogle Scholar
  36. 36.
    Grandjean A, Malki M, Simonnet C, Manara D, Penelon B (2007) Correlation between electrical conductivity, viscosity, and structure in borosilicate glass-forming melts. Phys Rev B 75:054112. doi: 10.1103/PhysRevB.75.054112 CrossRefGoogle Scholar
  37. 37.
    Ganapatibhotla LVNR, Zheng J, Roy D, Krishnan S (2010) PEGylated imidazolium ionic liquid electrolytes: thermophysical and electrochemical properties. Chem Mater 22:6347–6360. doi: 10.1021/cm102263s CrossRefGoogle Scholar
  38. 38.
    Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:2495–2496. doi: 10.1021/ja00986a052 CrossRefGoogle Scholar
  39. 39.
    Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. I. Structures of 1,4,7,10-tetraoxacyclododecane (12-crown-4) complexed with calcium, strontium and barium thiocyanates. Acta Crystallogr Sect C 44:68–73. doi: 10.1107/S0108270187009090 CrossRefGoogle Scholar
  40. 40.
    Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. II. Structures of 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5) complexed with calcium and magnesium thiocyanates. Acta Crystallogr Sect C 44:73–77. doi: 10.1107/S0108270187009107 CrossRefGoogle Scholar
  41. 41.
    Hou H, Zeng X, Liu X (2009) DFT study of a series of crown-4 ethers and their selectivity trend for alkali metal cations: Li+ and Na+. J Mol Model 15:105–111. doi: 10.1007/s00894-008-0379-8 CrossRefGoogle Scholar
  42. 42.
    Takeda Y (1980) The solvent extraction of alkali metal picrates by 12-crown-4. Bull Chem Soc Jpn 53:2393–2394. doi: 10.1246/bcsj.53.2393 CrossRefGoogle Scholar
  43. 43.
    Pedersen CJ, Frensdorff H (1972) Macrocyclic polyethers and their complexes. Angew Chem Int Ed Engl 11:16–25. doi: 10.1002/anie.197200161 CrossRefGoogle Scholar
  44. 44.
    DL Foster, J Wolfenstine, WK Behl (1999) Tertiary polyamines as additives to lithium-ion battery electrolytes. In: S Surampudi, R Marsh (eds) Proceedings of the symposium on lithium batteries, vol 98–16. The Electrochemical Society, Pennington, NJ, p 391Google Scholar
  45. 45.
    Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. doi: 10.1021/ic951325x CrossRefGoogle Scholar
  46. 46.
    Garland J, Pettit C, Roy D (2004) Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra. Electrochim Acta 49:2623–2635. doi: 10.1016/j.electacta.2003.12.051 CrossRefGoogle Scholar
  47. 47.
    Ganapatibhotla LVNR, Wu L, Zheng J, Jia X, Roy D, McLaughlin JB, Krishnan S (2011) Ionic liquids with fluorinated block-oligomer tails: influence of self-assembly on transport properties. J Mater Chem 21:19275–19285. doi: 10.1039/c1jm14526f CrossRefGoogle Scholar
  48. 48.
    Moganty SS, Chinthamanipeta PS, Vendra VK, Krishnan S, Baltus RE (2014) Structure–property relationships in transport and thermodynamic properties of imidazolium bistriflamide ionic liquids for CO2 capture. Chem Eng J 250:377–389. doi: 10.1016/j.cej.2014.04.010 CrossRefGoogle Scholar
  49. 49.
    Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 57:1072–1077. doi: 10.1021/je2010837 CrossRefGoogle Scholar
  50. 50.
    Bulut S, Eiden P, Beichel W, Slattery JM, Beyersdorff TF, Schubert TJS, Krossing I (2011) ChemPhysChem 12:2296–2310. doi: 10.1002/cphc.201100214 CrossRefGoogle Scholar
  51. 51.
    Widegren JA, Saurer EM, Marsh KN, Magee JW (2005) Electrical conductivity of four imidazolium-based room-temperature ionic liquids and the effect of water impurity. J Chem Thermodyn 37(6):569–575. doi: 10.1016/j.jct.2005.04.009 CrossRefGoogle Scholar
  52. 52.
    Hecksher T, Nielsen AI, Olsen NB, Dyre JC (2008) Little evidence for dynamic divergences in ultraviscous molecular liquids. Nat Phys 4:737–741. doi: 10.1038/nphys1033 CrossRefGoogle Scholar
  53. 53.
    Mauro JC, Yue Y, Ellison AJ, Gupta PK, Allan DC (2009) Viscosity of glass-forming liquids. Proc Natl Acad Sci 106:19780–19784. doi: 10.1073/pnas.0911705106 CrossRefGoogle Scholar
  54. 54.
    Lebga-Nebane JL, Rock SE, Franclemont J, Roy D, Krishnan S (2012) Thermophysical properties and proton transport mechanisms of trialkylammonium and 1-alkyl-1H-imidazol-3-ium protic ionic liquids. Ind Eng Chem Res 51:14084–14098. doi: 10.1021/ie301687c CrossRefGoogle Scholar
  55. 55.
    Grest GS, Cohen MH (1981) Liquids, glasses, and the glass transition: a free-volume approach. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 48. John Wiley & Sons, Hoboken, NJ, p 455–525. doi: 10.1002/9780470142684.ch6
  56. 56.
    Cohen MH, Grest GS (1981) Dispersion of relaxation rates in dense liquids and glasses. Phys Rev B 24:4091–4094. doi: 10.1103/PhysRevB.24.4091 CrossRefGoogle Scholar
  57. 57.
    Lau GP, Décoppet J-D, Moehl T, Zakeeruddin SM, Grätzel M, Dyson PJ (2015) Robust high-performance dye-sensitized solar cells based on ionic liquid-sulfolane composite electrolytes. Sci Rep 5:18158. doi: 10.1038/srep18158 CrossRefGoogle Scholar
  58. 58.
    Mandai T, Johansson P (2015) Al conductive haloaluminate-free non-aqueous room-temperature electrolytes. J Mater Chem A 3:12230–12239. doi: 10.1039/C5TA01760B CrossRefGoogle Scholar
  59. 59.
    Navia P, Troncoso J, Romaní L (2008) Viscosities for ionic liquid binary mixtures with a common ion. J Solut Chem 37:677–688. doi: 10.1007/s10953-008-9260-8 CrossRefGoogle Scholar
  60. 60.
    Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T (2012) Mixtures of ionic liquids. Chem Soc Rev 41:7780–7802. doi: 10.1039/C2CS35177C CrossRefGoogle Scholar
  61. 61.
    Katti PK, Chaudhri MM (1964) Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-cresol. J Chem Eng Data 9:442–443. doi: 10.1021/je60022a047 CrossRefGoogle Scholar
  62. 62.
    Grunberg L, Nissan AH (1949) Mixture law for viscosity. Nature 164:799–800. doi: 10.1038/164799b0 CrossRefGoogle Scholar
  63. 63.
    Stoppa A, Buchner R, Hefter G (2010) How ideal are binary mixtures of room-temperature ionic liquids? J Mol Liq 153:46–51. doi: 10.1016/j.molliq.2009.05.001 CrossRefGoogle Scholar
  64. 64.
    Le MLP, Tran NA, Ngo HPK, Nguyen TG, Tran VM (2015) Liquid electrolytes based on ionic liquids for lithium-ion batteries. J Solut Chem 44:2332–2343. doi: 10.1007/s10953-015-0408-z CrossRefGoogle Scholar
  65. 65.
    Taige M, Hilbert D, Schubert TJ (2012) Mixtures of ionic liquids as possible electrolytes for lithium ion batteries. Z Phys Chem 226:129–139. doi: 10.1524/zpch.2012.0161 Google Scholar
  66. 66.
    An Y, Zuo P, Cheng X, Liao L, Yin G (2011) Preparation and properties of ionic-liquid mixed solutions as a safety electrolyte for lithium ion batteries. Int J Electrochem Sci 6:2398–2410Google Scholar
  67. 67.
    Egashira M, Tanaka-Nakagawa M, Watanabe I, Okada S, Yamaki J-i (2006) Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J Power Sources 160:1387–1390. doi: 10.1016/j.jpowsour.2006.03.015 CrossRefGoogle Scholar
  68. 68.
    Moreno M, Simonetti E, Appetecchi G, Carewska M, Montanino M, Kim G-T, Loeffler N, Passerini S (2017) Ionic liquid electrolytes for safer lithium batteries: I. Investigation around optimal formulation. J Electrochem Soc 164:A6026–A6031. doi: 10.1149/2.0051701jes CrossRefGoogle Scholar
  69. 69.
    Anouti M, Timperman L (2013) A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors. Phys Chem Chem Phys 15:6539–6548. doi: 10.1039/C3CP44680H CrossRefGoogle Scholar
  70. 70.
    Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15:20054–20063. doi: 10.1039/C3CP53406E CrossRefGoogle Scholar
  71. 71.
    Vogl T, Menne S, Kuhnel R-S, Balducci A (2014) The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications. J Mater Chem A 2:8258–8265. doi: 10.1039/C3TA15224C CrossRefGoogle Scholar
  72. 72.
    Singh P, Banhatti RD, Funke K (2005) Non-arrhenius viscosity related to short-time ion dynamics in a fragile molten salt. Phys Chem Chem Phys 7:1096–1099. doi: 10.1039/B418432G CrossRefGoogle Scholar
  73. 73.
    Yamaguchi T, Yonezawa T, Koda S (2015) Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids. Phys Chem Chem Phys 17:19126–19133. doi: 10.1039/C5CP02335A CrossRefGoogle Scholar
  74. 74.
    Lee S-Y, Ueno K, Angell CA (2012) Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a Walden plot analysis of the maximally conductive compositions. J Phys Chem C 116:23915–23920. doi: 10.1021/jp3067519 CrossRefGoogle Scholar
  75. 75.
    Yoon H, Best AS, Forsyth M, MacFarlane DR, Howlett PC (2015) Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys Chem Chem Phys 17:4656–4663. doi: 10.1039/C4CP05333H CrossRefGoogle Scholar
  76. 76.
    Chen HP, Fergus JW, Jang BZ (2000) The effect of ethylene carbonate and salt concentration on the conductivity of propylene carbonate/lithium perchlorate electrolytes. J Electrochem Soc 147:399–406. doi: 10.1149/1.1393209 CrossRefGoogle Scholar
  77. 77.
    Saito Y, Kanari K, Takano K (1997) Thermal studies of a lithium-ion battery. J Power Sources 68:451–454. doi: 10.1016/S0378-7753(96)02583-9 CrossRefGoogle Scholar
  78. 78.
    Rong H, Xu M, Xie B, Lin H, Zhu Y, Zheng X, Huang W, Liao Y, Xing L, Li W (2016) A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J Power Sources 329:586–593. doi: 10.1016/j.jpowsour.2016.07.120 CrossRefGoogle Scholar
  79. 79.
    Levi MD, Dargel V, Shilina Y, Borgel V, Aurbach D, Halalay IC (2015) Tailoring the potential window of negative electrodes: a diagnostic method for understanding parasitic oxidation reactions in cells with 5 V LiNi0.5Mn1.5O4 positive electrodes. J Power Sources 278:599–607. doi: 10.1016/j.jpowsour.2014.12.130 CrossRefGoogle Scholar
  80. 80.
    Jha AR (2012) Next-generation batteries and fuel cells for commercial, military, and space applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  81. 81.
    Chin WC, Su Y, Sheng L, Li L, Bian H, Shi R (2014) Measurement while drilling (MWD) signal analysis, optimization and design. Wiley-Scrivener, Salem, MACrossRefGoogle Scholar
  82. 82.
    Leng F, Tan CM, Pecht M (2015) Effect of temperature on the aging rate of Li Ion battery operating above room temperature. Sci Rep 5:12967. doi: 10.1038/srep12967 CrossRefGoogle Scholar
  83. 83.
    Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158:R1–R25. doi: 10.1149/1.3515880 CrossRefGoogle Scholar
  84. 84.
    Saito Y, Shikano M, Kobayashi H (2013) Heat generation behavior during charging and discharging of lithium-ion batteries after long-time storage. J Power Sources 244:294–299. doi: 10.1016/j.jpowsour.2012.12.124 CrossRefGoogle Scholar
  85. 85.
    Ye J, Chen H, Wang Q, Huang P, Sun J, Lo S (2016) Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Appl Energy 182:464–474. doi: 10.1016/j.apenergy.2016.08.124 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamUSA
  2. 2.Department of PhysicsClarkson UniversityPotsdamUSA
  3. 3.Materials Science and Engineering Ph. D. ProgramClarkson UniversityPotsdamUSA
  4. 4.Intel CorporationChandlerUSA
  5. 5.ITC LimitedBengaluruIndia

Personalised recommendations