Journal of Materials Science

, Volume 52, Issue 9, pp 4957–4967

Prediction of the mechanical behavior of flax polypropylene composites based on multi-scale finite element analysis

  • Yucheng Zhong
  • Le Quan Ngoc Tran
  • Umeyr Kureemun
  • Heow Pueh Lee
Original Paper

DOI: 10.1007/s10853-016-0733-7

Cite this article as:
Zhong, Y., Tran, L.Q.N., Kureemun, U. et al. J Mater Sci (2017) 52: 4957. doi:10.1007/s10853-016-0733-7
  • 537 Downloads

Abstract

Natural fibers and their composites differ in several aspects with carbon fibers, including higher scatter in strength and different tensile responses. The tensile and bending properties of flax fiber composites were experimentally studied and numerically simulated. Composite panels were fabricated from unidirectional flax fiber tapes and polypropylene films via hot pressing technique. The variation in the properties of flax/polypropylene composites was found to be relatively moderate as compared with that of single natural fibers. A multi-scale finite element analysis (FEA) strategy for the progressive damage prediction of natural fiber composites was developed. The FEA model started from micro-scale analysis which predicted the effective properties of unidirectional flax ply through representative volume element. Macro-scale analysis was conducted subsequently to predict the properties of composite coupons using the results of micro-scale analysis as inputs. The developed multi-scale FE model successfully predicted the tensile strength, bending behavior, and major failure modes of flax/polypropylene composites.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Singapore Institute of Manufacturing Technology (SIMTech), A*StarSingaporeSingapore

Personalised recommendations