Skip to main content
Log in

Microstructure, interfaces and creep behaviour of Al2O3–Sm2O3 (ZrO2) eutectic ceramic composites

  • Eutectics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

New compositions in the melt-grown eutectic ceramics field are investigated for thermomechanical applications. This paper is focused on the Al2O3–Sm2O3–(ZrO2) system. The studied compositions give rise to interconnected microstructures without anisotropy along the growth direction. At variance with the binary eutectic Al2O3–SmAlO3, the homogeneity of the microstructure of the Al2O3–SmAlO3–ZrO2 ternary eutectic is less sensitive to the growth rate. Interfaces between the alumina and perovskite phases are investigated by high-resolution transmission electron microscopy (TEM). They are semi-coherent. In stepped interfaces, the facets are parallel to dense planes of each phase. The steps have a dislocation character and may accommodate both misfits. The ternary eutectic displays a very good creep behaviour with strain rates very close to those obtained on other previously studied eutectics in the Al2O3–RE2O3(RE = Y, Gd, Er)–ZrO2 systems. The deformation micromechanisms are analysed by TEM in the three eutectic phases. After creep, dislocations are present in every phase. The activation of unusual slip systems (pyramidal slip in the alumina phase) shows that high local stresses can be reached. The presence of dislocation networks with low energy configurations is consistent with predominance of dislocation climb processes controlled by bulk diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Waku Y, Nakagawa N, Wakamoto T et al (1997) A ductile ceramic eutectic composite with high strength at 1873 K. Nature 389:49–52

    Article  Google Scholar 

  2. Ochiai S, Ueda T, Sato K et al (2001) Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023 K. Compos Sci Technol 61:2117–2128

    Article  Google Scholar 

  3. Nakagawa N, Ohtsubo H, Mitani A et al (2005) High temperature strength and thermal stability for melt growth composite. J Eur Ceram Soc 25:1251–1257

    Article  Google Scholar 

  4. Pastor JY, LLorca J, Salazar A et al (2005) Mechanical properties of melt-grown alumina–yttrium aluminum garnet eutectics up to 1900 K. J Am Ceram Soc 88:1488–1495

    Article  Google Scholar 

  5. Hirano K (2005) Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700 °C. J Eur Ceram Soc 25:1191–1199

    Article  Google Scholar 

  6. Waku Y, Sakata S, Mitani A et al (2002) Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites. J Mater Sci 37:2975–2982. doi:10.1023/A:1016073115264

    Article  Google Scholar 

  7. Llorca J, Orera VM (2006) Directionally solidified eutectic ceramic oxides. Prog Mater Sci 51(6):711–809

    Article  Google Scholar 

  8. Calderon-Moreno JM, Yoshimura M (2005) Al2O3/Y3Al5O12(YAG)/ZrO2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc 25:1365–1368

    Article  Google Scholar 

  9. Waku Y, Sakata S, Mitani A et al (2005) Microstructure and high-temperature strength of Al2O3/Er3Al5O12/ZrO2 ternary melt growth composite. J Mater Sci 40:711–717. doi:10.1007/s10853-005-6311-z

    Article  Google Scholar 

  10. Waku Y (1998) A new ceramic eutectic composite with high strength at 1873 K. Adv Mater 10:615–617

    Article  Google Scholar 

  11. Mazerolles L, Trichet MF, Piquet N, Parlier M (2006) Microstructures and interfaces in melt-growth Al2O3–Ln2O3 based eutectic composites. In: 11th International Ceramic Congress Trans Tech Publications, pp 1377–1384

  12. Mazerolles L, Perriere L, Lartigue-Korinek S et al (2008) Microstructures, crystallography of interfaces, and creep behavior of melt-growth composites. J Eur Ceram Soc 28:2301–2308

    Article  Google Scholar 

  13. Mazerolles L, Perriere L, Lartigue-Korinek S, Parlier M (2011) Creep behavior and related structural defects in Al2O3–Ln2O3 (ZrO2) directionally solidified eutectics (Ln = Gd, Er, Y). J Eur Ceram Soc 31:1219–1225

    Article  Google Scholar 

  14. Perriere L, Valle R, Carrere N et al (2011) Crack propagation and stress distribution in binary and ternary directionally solidified eutectic ceramics. J Eur Ceram Soc 31:1199–1210

    Article  Google Scholar 

  15. Waku Y, Fujiwara N (2014) Ceramic composite material, Patent N° JP, 2014-169191, A. https://www4.j-platpat.inpit.go.jp/eng/tokujitsu/tkbs_en/TKBS_EN_GM301_Detailed.action

  16. Gervais H, Pellissier B, Castaing J (1978) Machine de fluage pour essais en compression à hautes temperatures de matériaux céramiques. Rev Int Htes Temp Refract 15:43–47

    Google Scholar 

  17. Pouchou JL, Pichoir F (1988) A simplified version of the PAP model for matrix corrections in EPMA. San Francisco Press, Milwaukee, pp 315–318

    Google Scholar 

  18. Potts PS (1987) Electron probe microanalysis, chapter of handbook of silicate rock analysis. Springer, Amsterdam, pp 336–337

    Book  Google Scholar 

  19. Yoshikawa A, Hasegawa K, Lee JH et al (2000) Phase identification of Al2O3/RE3Al5O12 and Al2O3/REAlO3 (RE = Sm–Lu, Y) eutectics. J Cryst Growth 218:67–73

    Article  Google Scholar 

  20. Mizuno M, Yamada T, Noguchi T (1977) Phase diagram of the system Al2O3–Sm2O3 at high temperatures. J Ceram Assoc Jpn 85:374–379

    Article  Google Scholar 

  21. Fabrichnaya O, Savinykh G, Zienert T et al (2012) Phase relations in the ZrO2–Sm2O3–Y2O3–Al2O3 system: experimental investigation and thermodynamic modelling. Int J Mater Res 103:1469–1487

    Article  Google Scholar 

  22. Frazer CS, Dickey EC, Sayir A (2001) Crystallographic texture and orientation variants in Al2O3–Y3Al5O12 directionally solidified eutectic crystals. J Cryst Growth 233:187–195

    Article  Google Scholar 

  23. Lefevre J (1963) Contribution à l’étude de différentes modifications structurales des phases de type fluorine dans les systèmes à base de zircone ou d’oxyde de hafnium. Ann Chim 8:117–158

    Google Scholar 

  24. Mitchell TE, Lagerlöf KPD, Heuer AH (1985) Dislocations in ceramics. Mater Sci Technol 1:944–949

    Article  Google Scholar 

  25. Deng H, Dickey EC, Paderno Y, Paderno V, Filipov V (2007) Interface crystallography and structure in LaB6–ZrB2 directionally solidified eutectics. J Am Ceram Soc 90:2603–2609

    Article  Google Scholar 

  26. Hay RS (2007) Orientation relationships between complex low symmetry oxides: geometric criteria and interface structure for yttrium aluminate eutectics. Acta Mat 55:991–1007

    Article  Google Scholar 

  27. Heuer AH, Castaing J (1984) Dislocations in alpha-Al2O3. Adv Ceram. In: Kingery WD (ed) Structure and properties of MgO and Al2O3 ceramics, vol 10. The American Ceramic Society, pp 238–257

  28. Cadoz J, Castaing J, Phillips D et al (1982) Work-hardening and recovery in sapphire (alpha-Al2O3) undergoing prism plane deformation. Acta Metall 30:2205–2218

    Article  Google Scholar 

  29. Lagerlof K, Heuer A, Castaing J et al (1994) Slip and twinning in sapphire (alpha-Al2O3). J Am Ceram Soc 77:385–397

    Article  Google Scholar 

  30. Heuer AH, Lagerlof KPD, Castaing J (1998) Slip and twinning dislocations in sapphire (alpha-Al2O3). Philos Mag Phys Condens Matter Struct Defects Mech Prop 78:747–763

    Google Scholar 

  31. Castillo-Rodriguez M, Castaing J, Muñoz A et al (2008) Analysis of a kink pair model applied to a Peierls mechanism in basal and prism plane slips in sapphire (α-Al2O3) deformed between 200 °C and 1800 °C. J Am Ceram Soc 91:1612–1617

    Article  Google Scholar 

  32. Snow JD, Heuer AH (1973) Slip systems in α-Al2O3. J Am Ceram Soc 56:153–157

    Article  Google Scholar 

  33. Besson P, Poirier JP, Price GD (1996) Dislocations in CaTiO3 perovskite deformed at high-temperature: a transmission electron microscopy study. Phys Chem Miner 23:337–344

    Article  Google Scholar 

  34. Wang ZC, Dupas-Bruzek C, Karato S (1999) High temperature creep of an orthorhombic perovskite–YAlO3. Phys Earth Planet Inter 110:51–69

    Article  Google Scholar 

  35. Hu M, Wenk H-R, Sinitsyna D (1992) Microstructures in natural perovskites. Am Mineral 77:359–373

    Google Scholar 

  36. Cheong DS, Dominguez-Rodriguez A, Heuer AH (1989) High temperature plastic deformation of Y2O3-stabilized ZrO2 single crystals II. Electron microscopy studies of dislocation substructures. Philos Mag A 60:123–138

    Article  Google Scholar 

  37. Messerschmidt U, Baufeld B, Baither D (1998) Plastic deformation of cubic zirconia single crystals. In: Key engineering materials, vol 153–154 Trans Tech Publications, Zirconia Engineering Ceramics, pp 143–182

  38. Tikhonovsky A, Bartsch M, Messerschmidt U (2004) Plastic deformation of yttria stabilized cubic zirconia single crystals I. Activation parameters of deformation. Phys Status Solidi (a) 201:26–45

    Article  Google Scholar 

  39. Gomez-Garcia D, Martinez-Fernandez J, Dominguez-Rodriguez A, Castaing J (1997) Mechanisms of high-temperature creep of fully stabilized zirconia single crystals as a function of the yttria content. J Am Ceram Soc 80:1668–1672

    Article  Google Scholar 

  40. Corman GS (1991) High-temperature creep of some single crystal oxides. Ceram Eng Sci Proc 12:1745–1766

    Article  Google Scholar 

  41. Cadoz J (1978) Etude de la déformation plastique de l’alumine α suivant le système de glissement prismatique. Ph.D. dissertation, Université de Paris Sud

Download references

Acknowledgements

The authors thank the Region Ile-de-France for convention SESAME 2008 E1845, which supports the JEOL ARM 200F electron microscope installed at MPQ (UMR7162), and Guillaume Wang for his kind assistance on the microscope. This work is supported by the Agence Nationale pour la Recherche through the CINATRA Project ANR-12-RNMP-0008, the METSA network and the European 7th framework program ‘‘ESTEEM2’’. Michael Walls from the Laboratoire de Physique des Solides of the University Paris XI in Orsay (France) is gratefully acknowledged for his reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Lartigue-Korinek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londaitzbéhère, L., Lartigue-Korinek, S. & Mazerolles, L. Microstructure, interfaces and creep behaviour of Al2O3–Sm2O3 (ZrO2) eutectic ceramic composites. J Mater Sci 52, 5489–5502 (2017). https://doi.org/10.1007/s10853-016-0726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0726-6

Keywords

Navigation