Skip to main content

Advertisement

Log in

Dehydrogenation properties of ammonia borane–polyacrylamide nanofiber hydrogen storage composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current investigation seeks to measure the thermal and vibrational response of ammonia borane (NH3BH3, AB)/polyacrylamide (PAM, M n ~ 150,000) composites in bulk and electrospun fiber forms. The hydrogen release and melting temperature profiles for the composites were found to be lower than pristine AB. The kinetic analysis of the first dehydrogenation peak with respect to the heating ramp rates showed that the corresponding activation energy (E a) revealed the greatest decrease for the electrospun fibers (~61 kJ/mol), as compared to the bulk composites (~95 kJ/mol) and the pristine AB (~133 kJ/mol). Overall, the nanofibers showed the greatest decrease in E a, suggesting improved kinetic behavior. In addition to the enhanced kinetic properties, thermal gravimetric analysis showed significantly reduced weight loss for the composites. We have hypothesized that this is due to the suppression of the unwanted boracic byproducts and NH3. The weight loss decreased from 57.8% (AB) to 21.8% (fibers). Fourier-transform infrared study shows the interaction between the AB and PAM indication for the mentioned improvements. Decomposition IR studies revealed the disruption of the bonds with the broadening of the peaks and the disappearance of B–H stretch due to the dehydrogenation. These results imply that the novel composites revealed tuned properties by confining the AB molecules within the polymer matrix, having major implications in potential hydrogen storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Gasping for air: toxic pollutants continue to make millions sick and shorten lives (2011) Natural Resources Defense Council, p 1–4. https://www.nrdc.org/sites/default/files/airpollutionhealthimpacts.pdf

  2. Ott K, Simpson L, Klebanoff L (2012) In: Program FCT, Energy OoEEaR, Energy USDo (eds) U.S. Department of Energy, USA, p 1–75. https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/executive_summaries_h2_storage_coes.pdf

  3. Dodds PE, Staffell I, Hawkes AD et al (2015) Hydrogen and fuel cell technologies for heating: a review. Int J Hydrogen Energy 40:2065–2083. doi:10.1016/j.ijhydene.2014.11.059

    Article  Google Scholar 

  4. Chen P, Zhu M (2008) Recent progress in hydrogen storage. Mater Today 11:36–43. doi:10.1016/S1369-7021(08)70251-7

    Article  Google Scholar 

  5. Johnson SR, Anderson PA, Edwards PP et al (2005) Chemical activation of MgH2: a new route to superior hydrogen storage materials. Chem Commun 2823–2825. doi:10.1039/B503085D

  6. Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129. doi:10.1126/science.1083440

    Article  Google Scholar 

  7. Frueh S, Kellett R, Mallery C et al (2011) Pyrolytic decomposition of ammonia borane to boron nitride. Inorg Chem 50:783–792. doi:10.1021/ic101020k

    Article  Google Scholar 

  8. Marder TB (2007) Will we soon be fueling our automobiles with ammonia–borane? Angew Chem 46:8116–8118. doi:10.1002/anie.200703150

    Article  Google Scholar 

  9. Kobayashi T, Hlova IZ, Singh NK, Pecharsky VK, Pruski M (2012) Solid-state NMR study of Li-assisted dehydrogenation of ammonia borane. Inorg Chem 51:4108–4115. doi:10.1021/ic202368a

    Article  Google Scholar 

  10. Hu J, Chen Z, Li M, Zhou X, Lu H (2014) Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane. ACS Appl Mater Interfaces 6:13191–13200. doi:10.1021/am503037k

    Article  Google Scholar 

  11. Wolf G, Baumann J, Baitalow F, Hoffmann FP (2000) Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochim Acta 343:19–25. doi:10.1016/S0040-6031(99)00365-2

    Article  Google Scholar 

  12. Bhunya S, Roy L, Paul A (2016) Mechanistic details of Ru–bis(pyridyl)borate complex catalyzed dehydrogenation of ammonia–borane: role of the pendant boron ligand in catalysis. ACS Catal 6:4068–4080. doi:10.1021/acscatal.5b02616

    Article  Google Scholar 

  13. Richard J, Cid SL, Rouquette J, van der Lee A, Bernard S, Haines J (2016) Pressure-induced insertion of ammonia borane in the siliceous zeolite, silicalite-1F. J Phys Chem C 120:9334–9340. doi:10.1021/acs.jpcc.6b02134

    Article  Google Scholar 

  14. Li SF, Tang ZW, Tan YB, Yu XB (2012) Polyacrylamide blending with ammonia borane: a polymer supported hydrogen storage composite. J Phys Chem C 116:1544–1549. doi:10.1021/jp209234f

    Article  Google Scholar 

  15. Zhao J, Shi J, Zhang X et al (2010) A soft hydrogen storage material: poly(methyl acrylate)-confined ammonia borane with controllable dehydrogenation. Adv Mater 22:394–397. doi:10.1002/adma.200902174

    Article  Google Scholar 

  16. Nathanson AS, Ploszajski AR, Billing M et al (2015) Ammonia borane-polyethylene oxide composite materials for solid hydrogen storage. J Mater Chem A 3:3683–3691. doi:10.1039/C4TA06657J

    Article  Google Scholar 

  17. Tang Z, Li S, Yang Z, Yu X (2011) Ammonia borane nanofibers supported by poly(vinyl pyrrolidone) for dehydrogenation. J Mater Chem 21:14616–14621. doi:10.1039/C1JM12190A

    Article  Google Scholar 

  18. Denney MC, Pons V, Hebden TJ, Heinekey DM, Goldberg KI (2006) Efficient catalysis of ammonia borane dehydrogenation. J Am Chem Soc 128:12048–12049. doi:10.1021/ja062419g

    Article  Google Scholar 

  19. Gangal AC, Kale P, Edla R, Manna J, Sharma P (2012) Study of kinetics and thermal decomposition of ammonia borane in presence of silicon nanoparticles. Int J Hydrogen Energy 37:6741–6748. doi:10.1016/j.ijhydene.2012.01.017

    Article  Google Scholar 

  20. Kumar D, Mangalvedekar HA, Mahajan SK (2014) Nano-nickel catalytic dehydrogenation of ammonia borane. Mater Renew Sustain Energy 3:1–7. doi:10.1007/s40243-014-0023-8

    Article  Google Scholar 

  21. Metin Ö, Özkar S (2009) Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst. Energy Fuels 23:3517–3526. doi:10.1021/ef900171t

    Article  Google Scholar 

  22. Ma H, Na C (2015) Isokinetic temperature and size-controlled activation of ruthenium-catalyzed ammonia borane hydrolysis. ACS Catal 5:1726–1735. doi:10.1021/cs5019524

    Article  Google Scholar 

  23. Kim S-K, Kim T-J, Kim T-Y et al (2012) Tetraglyme-mediated synthesis of Pd nanoparticles for dehydrogenation of ammonia borane. Chem Commun 48:2021–2023. doi:10.1039/C2CC15931G

    Article  Google Scholar 

  24. Glüer A, Förster M, Celinski VR, Schmedt auf der Günne J, Holthausen MC, Schneider S (2015) Highly active iron catalyst for ammonia borane dehydrocoupling at room temperature. ACS Catal 5:7214–7217. doi:10.1021/acscatal.5b02406

    Article  Google Scholar 

  25. Kumar R, Jagirdar BR (2013) B–H bond activation using an electrophilic metal complex: insights into the reaction pathway. Inorg Chem 52:28–36. doi:10.1021/ic300390s

    Article  Google Scholar 

  26. Zhao Y, Zhang J, Akins DL, Lee JW (2011) Effect of composition on dehydrogenation of mesoporous silica/ammonia borane nanocomposites. Ind Eng Chem Res 50:10024–10028. doi:10.1021/ie200330x

    Article  Google Scholar 

  27. Paolone A, Palumbo O, Rispoli P, Cantelli R, Autrey T, Karkamkar A (2009) Absence of the structural phase transition in ammonia borane dispersed in mesoporous silica: evidence of novel thermodynamic properties. J Phys Chem C 113:10319–10321. doi:10.1021/jp902341s

    Article  Google Scholar 

  28. Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128:7748–7749. doi:10.1021/ja062085v

    Article  Google Scholar 

  29. Pant HR, Kim HJ, Joshi MK et al (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33. doi:10.1016/j.jhazmat.2013.10.066

    Article  Google Scholar 

  30. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi:10.1016/j.biotechadv.2010.01.004

    Article  Google Scholar 

  31. Liao N, Unnithan AR, Joshi MK et al (2015) Electrospun bioactive poly(ε-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications. Colloids Surf A 469:194–201. doi:10.1016/j.colsurfa.2015.01.022

    Article  Google Scholar 

  32. Alipour J, Shoushtari AM, Kaflou A (2015) Ammonia borane confined by poly(methyl methacrylate)/multiwall carbon nanotube nanofiber composite, as a polymeric hydrogen storage material. J Mater Sci 50:3110–3117. doi:10.1007/s10853-015-8871-x

    Article  Google Scholar 

  33. Sepehri S, Garcia BB, Cao G (2008) Tuning dehydrogenation temperature of carbon-ammonia borane nanocomposites. J Mater Chem 18:4034–4037. doi:10.1039/B808511K

    Article  Google Scholar 

  34. Lee K-S, Jung Kweon J, Oh I-H, Eui Lee C (2012) Polymorphic phase transition and thermal stability in squaric acid (H2C4O4). J Phys Chem Solid 73:890–895. doi:10.1016/j.jpcs.2012.02.013

    Article  Google Scholar 

  35. Starink MJ (1996) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta 288:97–104. doi:10.1016/S0040-6031(96)03053-5

    Article  Google Scholar 

  36. Choi YJ, Xu Y, Shaw WJ, Rönnebro ECE (2012) Hydrogen storage properties of new hydrogen-rich BH3NH3-metal hydride (TiH2, ZrH2, MgH2, and/or CaH2) composite systems. J Phys Chem C 116:8349–8358. doi:10.1021/jp210460w

    Article  Google Scholar 

  37. Kaswan A, Kumari V, Patidar D, Saxena NS, Sharmadoi K (2013) Kinetics of phase transformations and thermal stability of GexSe70Sb30−x (x = 5, 10, 15, 20) chalcogenide glasses. N J Glass Ceram 3:99–103. doi:10.4236/njgc.2013.34016

    Article  Google Scholar 

  38. Rassat SD, Aardahl CL, Autrey T, Smith RS (2010) Thermal stability of ammonia borane: a case study for exothermic hydrogen storage materials. Energy Fuels 24:2596–2606. doi:10.1021/ef901430a

    Article  Google Scholar 

  39. Yang M-H (1998) The two-stages thermal degradation of polyacrylamide. Polym Test 17:191–198. doi:10.1016/S0142-9418(97)00036-6

    Article  Google Scholar 

  40. Kharel K, Gangineni R, Suvvari R, Ware L, Wei S, Günaydın-Şen Ö (2016) Low temperature phase transition properties of ammonia-borane polyacrylamide composites (in preparation)

Download references

Acknowledgements

The authors acknowledge Dan Rutman who helped acquire the SEM images at Lamar University. This research was supported by Welch Foundation (V-0004) and Lamar University Research Enhancement Grant (REG-420240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özge Günaydın-Şen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharel, K., Gangineni, R., Ware, L. et al. Dehydrogenation properties of ammonia borane–polyacrylamide nanofiber hydrogen storage composites. J Mater Sci 52, 4894–4902 (2017). https://doi.org/10.1007/s10853-016-0724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0724-8

Keywords

Navigation