Journal of Materials Science

, Volume 52, Issue 9, pp 4852–4865 | Cite as

Facile synthesis of iron-doped hollow urchin-like MnO2 for supercapacitors

Original Paper

Abstract

Hollow urchin-like iron-doped manganese dioxide (Fe–MnO2) architectures were successfully prepared without any template or surfactant via a facile one-step hydrothermal route. Hollow urchin-like Fe–MnO2 architectures were made up of interleaving nanosheets, resulting in porous structures and high specific surface area. The formation mechanism of hollow urchin-like Fe–MnO2 architectures was proposed based on the Ostwald ripening process. When employed as supercapacitor electrode material, hollow urchin-like Fe–MnO2 delivered a specific capacitance of 203.3 F g−1 at 250 mA g−1 as well as a good capacity retention of 88.1% after 1000 cycles at 5 A g−1. Coupled with activated carbon (AC) negative electrode, Fe–MnO2//AC asymmetric supercapacitor (Fe–MnO2//AC ASC) achieved an energy density of 20.2 Wh kg−1 at a power density of 225 W kg−1 and 83.8% capacity retention after 1000 cycles at 3 A g−1, suggesting its potential applications for energy storage.

References

  1. 1.
    Lei Z, Zhang J, Zhang LL, Kumar NA, Zhao XS (2016) Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ Sci 9:1891–1930CrossRefGoogle Scholar
  2. 2.
    Yan L, Rui X, Chen G, Xu W, Zou G, Luo H (2016) Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale 8:8443–8465CrossRefGoogle Scholar
  3. 3.
    Nagaraju G, Ko YH, Cha SM, Im SH, Yu JS (2016) A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: an efficient and flexible electrode material to enhance energy storage. Nano Res 9:1507–1522CrossRefGoogle Scholar
  4. 4.
    Zhang XQ, Zhao YC, Wang CG, Li X, Liu JD, Yue GH, Zhou ZD (2016) Facile synthesis of hollow urchin-like NiCo2O4 microspheres for high-performance sodium-ion batteries. J Mater Sci 51:9296–9305. doi:10.1007/s10853-016-0176-1 CrossRefGoogle Scholar
  5. 5.
    Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna P-L, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy. doi:10.1038/nenergy.2016.70 Google Scholar
  6. 6.
    Li Z, Han J, Fan L, Wang M, Tao S, Guo R (2015) The anion exchange strategy towards mesoporous α-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors. Chem Commun 51:3053–3056CrossRefGoogle Scholar
  7. 7.
    Chen K, Yin S, Xue D (2015) A binary AxB1−x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation. Nanoscale 7:1161–1166CrossRefGoogle Scholar
  8. 8.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730CrossRefGoogle Scholar
  9. 9.
    Park SK, Suh DH, Park HS (2016) Electrochemical assembly of reduced graphene oxide/manganese dioxide nanocomposites into hierarchical sea urchin-like structures for supercapacitive electrodes. J Alloy Compd 668:146–151CrossRefGoogle Scholar
  10. 10.
    Meng F, Fang Z, Li Z, Xu W, Wang M, Liu Y, Zhang J, Wang W, Zhao D, Guo X (2013) Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J Mater Chem A 1:7235–7241CrossRefGoogle Scholar
  11. 11.
    Liu XY, Gao YQ, Yang GW (2016) A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Nanoscale 8:4227–4235CrossRefGoogle Scholar
  12. 12.
    Zheng C, Cao C, Chang R, Hou J, Zhai H (2016) Hierarchical mesoporous NiCo2O4 hollow nanocubes for supercapacitors. Phys Chem Chem Phys 18:6268–6274CrossRefGoogle Scholar
  13. 13.
    Zhou H, Zou X, Zhang Y (2016) Fabrication of TiO2@MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors. Electrochim Acta 192:259–267CrossRefGoogle Scholar
  14. 14.
    Li W, Xu K, Li B, Sun J, Jiang F, Yu Z, Zou R, Chen Z, Hu J (2014) MnO2 nanoflower arrays with high rate capability for flexible supercapacitors. ChemElectroChem 1:1003–1008CrossRefGoogle Scholar
  15. 15.
    Ma Z, Shao G, Fan Y, Wang G, Song J, Shen D (2016) Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core–shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces 8:9050–9058CrossRefGoogle Scholar
  16. 16.
    Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423CrossRefGoogle Scholar
  17. 17.
    Zhang X, Sun X, Zhang H, Li C, Ma Y (2014) Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application. Electrochim Acta 132:315–322CrossRefGoogle Scholar
  18. 18.
    Xu H, Hu X, Sun Y, Yang H, Liu X, Huang Y (2015) Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res 8:1148–1158CrossRefGoogle Scholar
  19. 19.
    Kazemi SH, Kiani M, Ghaemmaghami M, Kazemi H (2016) Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim Acta 197:107–116CrossRefGoogle Scholar
  20. 20.
    Wang P, Zhao Y-J, Wen L-X, Chen J-F, Lei Z-G (2014) Ultrasound–microwave-assisted synthesis of MnO2 supercapacitor electrode materials. Ind Eng Chem Res 53:20116–20123CrossRefGoogle Scholar
  21. 21.
    Nayak PK, Munichandraiah N (2012) Rapid sonochemical synthesis of mesoporous MnO2 for supercapacitor applications. Mater Sci Eng B 177:849–854CrossRefGoogle Scholar
  22. 22.
    Jaganyi D, Altaf M, Wekesa I (2013) Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature. Appl Nanosci 3:329–333CrossRefGoogle Scholar
  23. 23.
    Yang L, Tian X, Qian L, Liu Y, Guo Y, Xiao D (2015) Facile Synthesis of Birnessite-type MnO2 and its application as a supercapacitor. Nanosci NanoTech Lett 7:749–753CrossRefGoogle Scholar
  24. 24.
    Liu Z, Xu K, Sun H, Yin S (2015) One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small 11:2182–2191CrossRefGoogle Scholar
  25. 25.
    He W, Yang W, Wang C, Deng X, Liu B, Xu X (2016) Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage. Phys Chem Chem Phys 18:15235–15243CrossRefGoogle Scholar
  26. 26.
    Feng XM, Yan ZZ, Chen NN (2014) Synthesis of hollow urchin-like MnO2 via a facile hydrothermal method and its application in supercapacitors. Chin J Inorg Chem 30:2509–2515Google Scholar
  27. 27.
    Panahi-Kalamuei M, Motevalli K, Aliabadi M (2016) Rice-like MnO2 nanoparticles: simple and novel thermal decomposition synthesis, characterization and photocatalytic activity using new precursor. J Mater Sci 27:4631–4635. doi:10.1007/s10854-016-4340-9 Google Scholar
  28. 28.
    Grote F, Kühnel R-S, Balducci A, Lei Y (2014) Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Appl Phys Lett. doi:10.1063/1.4864285 Google Scholar
  29. 29.
    Sarkar A, Satpati AK, Kumar V, Kumar S (2015) Sol–gel synthesis of manganese oxide films and their predominant electrochemical properties. Electrochim Acta 167:126–131CrossRefGoogle Scholar
  30. 30.
    Huang Y, Liang Z, Miao YE, Liu T (2015) Diameter-controlled synthesis and capacitive performance of mesoporous dual-layer MnO2 nanotubes. ChemNanoMat 1:159–166CrossRefGoogle Scholar
  31. 31.
    Su D, Ahn H-J, Wang G (2013) Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J Mater Chem A 1:4845–4850CrossRefGoogle Scholar
  32. 32.
    Li Y-F, Li S-S, Zhou D-L, Wang A-J, Zhang P-P, Li C-G, Feng J-J (2014) Facile controlled synthesis of MnO2 nanowires for supercapacitors. J Solid State Electr 18:2521–2527CrossRefGoogle Scholar
  33. 33.
    Munaiah Y, Sundara Raj BG, Prem Kumar T, Ragupathy P (2013) Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. J Mater Chem A 1:4300–4306CrossRefGoogle Scholar
  34. 34.
    Shang J, Xie B, Li Y, Wei X, Du N, Li H, Hou W, Zhang R (2016) Inflating strategy to form ultrathin hollow MnO2 nanoballoons. ACS Nano. doi:10.1021/acsnano.1026b01229 Google Scholar
  35. 35.
    Li L, Li R, Gai S, Ding S, He F, Zhang M, Yang P (2015) MnO2 nanosheets grown on nitrogen-doped hollow carbon shells as a high-performance electrode for asymmetric supercapacitors. Chem-Eur J 21:7119–7126CrossRefGoogle Scholar
  36. 36.
    Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43CrossRefGoogle Scholar
  37. 37.
    Zhang X, Sun X, Zhang H, Zhang D, Ma Y (2013) Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors. Electrochim Acta 87:637–644CrossRefGoogle Scholar
  38. 38.
    Yu Z, Duong B, Abbitt D, Thomas J (2013) Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 25:3302–3306CrossRefGoogle Scholar
  39. 39.
    Park S, Shim H-W, Lee CW, Song HJ, Park IJ, Kim J-C, Hong KS, Kim D-W (2015) Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res 8:990–1004CrossRefGoogle Scholar
  40. 40.
    Peng R, Wu N, Zheng Y, Huang Y, Luo Y, Yu P, Zhuang L (2016) Large-scale synthesis of metal-ion-doped manganese dioxide for enhanced electrochemical performance. ACS Appl Mater Interfaces 8:8474–8480CrossRefGoogle Scholar
  41. 41.
    Zhao S, Liu T, Javed MS, Zeng W, Hussain S, Zhang Y, Peng X (2016) Rational synthesis of Cu-doped porous δ-MnO2 microsphere for high performance supercapacitor applications. Electrochim Acta 191:716–723CrossRefGoogle Scholar
  42. 42.
    Poonguzhali R, Gobi R, Shanmugam N, Senthil Kumar A, Viruthagiri G, Kannadasan N (2015) Enhancement in electrochemical behavior of copper doped MnO2 electrode. Mater Lett 157:116–122CrossRefGoogle Scholar
  43. 43.
    Wang Z, Wang F, Li Y, Hu J, Lu Y, Xu M (2016) Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance. Nanoscale 8:7309–7317CrossRefGoogle Scholar
  44. 44.
    Su X, Yu L, Cheng G, Zhang H, Sun M, Zhang L, Zhang J (2014) Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Appl Energy 134:439–445CrossRefGoogle Scholar
  45. 45.
    Yuping D, Jia Z, Hui J, Shunhua L (2011) Morphology-controlled synthesis and novel microwave electromagnetic properties of hollow urchin-like chain Fe-doped MnO2 under 10 T high magnetic field. J Solid State Chem 184:1165–1171CrossRefGoogle Scholar
  46. 46.
    Bag S, Raj CR (2016) Facile shape-controlled growth of hierarchical mesoporous δ-MnO2 for the development of asymmetric supercapacitors. J Mater Chem A 4:8384–8394CrossRefGoogle Scholar
  47. 47.
    Yu P, Zhang X, Wang D, Wang L, Ma Y (2009) Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst Growth Des 9:528–533CrossRefGoogle Scholar
  48. 48.
    Li J, Ren Z, Wang S, Ren Y, Qiu Y, Yu J (2016) MnO2 nanosheets grown on internal surface of macroporous carbon with enhanced electrochemical performance for supercapacitors. ACS Sustain Chem Eng 4:3641–3648CrossRefGoogle Scholar
  49. 49.
    Salunkhe RR, Tang J, Kamachi Y, Nakato T, Kim JH, Yamauchi Y (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 9:6288–6296CrossRefGoogle Scholar
  50. 50.
    Chen W, Zhang Z, Bao W, Lai Y, Li J, Gan Y, Wang J (2014) Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li–O2 batteries. Electrochim Acta 134:293–301CrossRefGoogle Scholar
  51. 51.
    Nie G, Lu X, Lei J, Jiang Z, Wang C (2014) Electrospun V2O5-doped α-Fe2O3 composite nanotubes with tunable ferromagnetism for high-performance supercapacitor electrodes. J Mater Chem A 2:15495–15501CrossRefGoogle Scholar
  52. 52.
    Li Z, Han J, Fan L, Guo R (2015) Template-free synthesis of Ni7S6 hollow spheres with mesoporous shells for high performance supercapacitors. CrystEngComm 17:1952–1958CrossRefGoogle Scholar
  53. 53.
    Ma W, Chen S, Yang S, Chen W, Cheng Y, Guo Y, Peng S, Ramakrishna S, Zhu M (2016) Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J Power Sources 306:481–488CrossRefGoogle Scholar
  54. 54.
    Li ZC, Xu J (2016) Facile hydrothermal synthesis of flowerlike MnO2 constructed by ultrathin nanosheets for supercapacitors. Biointerface Res Appl Chem 6:1070–1074Google Scholar
  55. 55.
    Tang C-L, Wei X, Jiang Y-M, Wu X-Y, Han LN, Wang K-X, Chen J-S (2015) Cobalt-doped MnO2 hierarchical yolk-shell spheres with improved supercapacitive performance. J Phys Chem C 119:8465–8471CrossRefGoogle Scholar
  56. 56.
    Han D, Jing X, Xu P, Ding Y, Liu J (2014) Facile synthesis of hierarchical hollow ε-MnO2 spheres and their application in supercapacitor electrodes. J Solid State Chem 218:178–183CrossRefGoogle Scholar
  57. 57.
    Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830CrossRefGoogle Scholar
  58. 58.
    Mu B, Zhang W, Xu W, Wang A (2015) Hollowed-out tubular carbon@MnO2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials. Electrochim Acta 178:709–720CrossRefGoogle Scholar
  59. 59.
    An C, Wang Y, Jiao L, Yuan H (2016) Mesoporous Ni@C hybrids for a high energy aqueous asymmetric supercapacitor device. J Mater Chem A 4:9670–9676CrossRefGoogle Scholar
  60. 60.
    Kumar R, Rai P, Sharma A (2016) 3D urchin-shaped Ni3(VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications. J Mater Chem A. doi:10.1039/C1036TA03519A Google Scholar
  61. 61.
    Balamurugan J, Thanh TD, Kim NH, Lee JH (2016) Facile synthesis of 3D hierarchical N-doped graphene nanosheet/cobalt encapsulated carbon nanotubes for high energy density asymmetric supercapacitors. J Mater Chem A 4:9555–9565CrossRefGoogle Scholar
  62. 62.
    Li Z, Ji X, Han J, Hu Y, Guo R (2016) NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: in-situ synthesis and enhanced capacitive performance. J Colloid Interface Sci 477:46–53CrossRefGoogle Scholar
  63. 63.
    Liu Y, He D, Wu H, Duan J, Zhang Y (2015) Hydrothermal self-assembly of manganese dioxide/manganese carbonate/reduced graphene oxide aerogel for asymmetric supercapacitors. Electrochim Acta 164:154–162CrossRefGoogle Scholar
  64. 64.
    Tang P, Han L, Zhang L (2014) Facile Synthesis of Graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 6:10506–10515CrossRefGoogle Scholar
  65. 65.
    Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C 118:22865–22872CrossRefGoogle Scholar
  66. 66.
    Tsai Y-C, Yang W-D, Lee K-C, Huang C-M (2016) An effective electrodeposition Mode for porous MnO2/Ni foam composite for asymmetric supercapacitors. Materials. doi:10.3390/ma9040246 Google Scholar
  67. 67.
    Li Y, Yu N, Yan P, Li Y, Zhou X, Chen S, Wang G, Wei T, Fan Z (2015) Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J Power Sources 300:309–317CrossRefGoogle Scholar
  68. 68.
    Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemistry and Environmental EngineeringJiangsu Teachers University of TechnologyChangzhouPeople’s Republic of China
  2. 2.Department of ChemistryThe University of Hong KongHong Kong SARChina

Personalised recommendations