Skip to main content
Log in

Effect of annealing temperature on the structural, optical, and electrical properties of MoS2 electrodeposited onto stainless steel mesh

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum disulphide (MoS2) thin films were deposited on flexible stainless steel mesh (SSM) using an electrodeposition method. The influence of annealing treatment from 200 to 800 °C under a Nitrogen atmosphere for 30 min, on the structural, morphological, optical, and electrical properties of samples were investigated. X-ray diffraction showed that MoS2 thin film annealed at 700 °C exhibited the best crystalline quality with (002) preferential orientation. Scanning electron microscopy showed that the films were compact and grain size increased with increasing annealing temperature, from 825 nm to 1.5 µm, whereas annealing at a higher temperature (800 °C) resulted in a significant agglomeration of MoS2. According to the UV–Vis diffuse reflectivity spectra, the band gap of thin films was deduced in the range between 1.52 and 1.56 eV. Through photoluminescence measurement, it was demonstrated that among the five samples annealed at different temperatures, the 700 °C-annealed sample presents the lowest intensity with a narrow shape. Using the electrochemical impedance spectroscopy data, the interface was modeled as an equivalent circuit approach. From Mott–Schottky plots, the flat-band potential and the acceptor density for MoS2 thin films are determined. All the films showed an n-type semiconductor character with the highest carrier density of 4.8 × 1022 cm−3 and lowest flat-band potential of −0.55 V when the annealing was maintained at 700 °C. These results suggest that the MoS2 thin film electrodeposited on SSM substrate and annealed at 700 °C under N2 atmosphere is a promising strategy in the range of chalcogenide material suitable for the photoelectrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Huang Z, Han W, Liu X, Qi X, Zhong J (2014) Graphene/MoS2 hybrid structure and its photoresponse property. Ceram Int 40:11971–11974

    Article  Google Scholar 

  2. Liang P, Tai B, Shu H, Shen T, Dong Q (2015) Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: from first principles. Solid State Commun 204:67–71

    Article  Google Scholar 

  3. Shariza S, Ying LM, Joseph Sahaya Anand T (2012) Electrodeposited molybdenum chalcogenide (MoX2) thin films for photovoltaic applications, 3rd Infineon-MMU Technical Symposium, 2012

  4. Prins R, Debeer VHJ, Somorjai GA (1989) Structure and function of the catalyst and the promoter in Co–Mo hydrodesulfurization catalysts. Catal Rev 31:1–41

    Article  Google Scholar 

  5. Salmeron M, Somorjai GA, Wold A, Chianelli R, Liang KS (1982) The adsorption and binding of thiophene, butene and H2S on the basal plane of MoS2 single crystals. Chem Phys Lett 90:105–107

    Article  Google Scholar 

  6. Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807–5813

    Article  Google Scholar 

  7. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  Google Scholar 

  8. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10(4):1271–1275

    Article  Google Scholar 

  9. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS. Nat Nanotechnol 8(7):497–501

    Article  Google Scholar 

  10. Amani M, Chin ML, Birdwell AG, O’Regan TP, Najmaei S, Liu Z, Ajayan PM, Lou J, Dubey M (2013) Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl Phys Lett 102:193107

    Article  Google Scholar 

  11. Tributsch H, Gerischer H, Clément C, Bucher E (1979) On the photopotential output of electrochemical solar cells based on layer-type d-band semiconductors. Phys Chem 83:655

    Google Scholar 

  12. Wang JC, Hepworth MT, Reid KJ (1990) The formation of films of MoS2 by sputtering and sulfidizing. Plat Surf Finish 77:60–64

    Google Scholar 

  13. Jäger-Waldau A, Lux-Steiner MCh, Bucher E, Scandella L, Schumacher A, Prins R (1993) MoS2 thin films prepared by sulphurization. Appl Surf Sci 65:465

    Article  Google Scholar 

  14. Spalvins T (1971) Lubrication with sputtered MoS2 films. ASLE Trans 14:267

    Article  Google Scholar 

  15. Hoffmann WK (1988) Thin films of molybdenum and tungsten disulphides by metal organic chemical vapour deposition. J Mater Sci 23:3981. doi:10.1007/BF01106824

    Article  Google Scholar 

  16. Chatzitheodorou G, Fiechter S, Kunst M, Luck J, Tributsch H (1988) Low temperature chemical preparation of semiconducting transition metal chalcogenide films for energy conversion and storage, lubrication and surface protection. Mater Res Bull 23:1261

    Article  Google Scholar 

  17. Pramanik P, Bhattacharya S (1990) Deposition of molybdenum chalcogenide thin films by the chemical deposition technique and the effect of bath parameters on these thin films. Mater Res Bull 25:15

    Article  Google Scholar 

  18. Mandal KC, Savadogo O (1991) A new chemical method of preparing semiconducting MoX2(X = S, Se) thin films. Jpn J Appl Phys

  19. Ponomarev EA, Neumann-Spallart M, Hodes G, Lévy Clément C (1996) Electrochemical deposition of MoS2 thin films by reduction of tetrathiomolybdate. Thin Solid Films 280:86

    Article  Google Scholar 

  20. Yang D, Sandoval SJ, Divigalpitiya W, Irwin JC, Frindt RF (1991) Structure of single-molecular-layer MoS2. Phys Rev B 43:12053

    Article  Google Scholar 

  21. Zhou X, Yang D, Frindt RF (1996) Study of restacked single molecular layer molybdenum disulfide with organic tetrachloroethylene included. J Phys Chem Solids 57:1137

    Article  Google Scholar 

  22. Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38:5

    Article  Google Scholar 

  23. Peng Y, Meng Z, Zhong C, Lu J, Yu W, Jia Y, Qian Y (2001) Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem Lett 30:772–773

    Article  Google Scholar 

  24. Aliyev AS, Elrouby M, Cafarova SF (2015) Electrochemical synthesis of molybdenum sulfide semiconductor. Mater Sci Semicond Process 32:31–39

    Article  Google Scholar 

  25. Shariza S, Anand TJS (2011) Effect of deposition time on the structural and optical properties of molybdenum chalcogenides thin films. Chalcogenide Lett 8(9):529–539

    Google Scholar 

  26. Albu-Yaron A, Lévy-Clément C, Katty A, Bastide S, Tenne R (2000) Influence of the electrochemical deposition parameters on the microstructure of MoS2 thin films. Thin Solid Films 361–362:223–228

    Article  Google Scholar 

  27. Lamouchi A, Slimi B, Ben Assaker I, Gannouni M, Chtourou R (2016) Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications. Eur Phys J Plus 131:201

    Article  Google Scholar 

  28. Anuar K, Tan WT, Atan MSS, Dzulkefly K, Ho SM, MdJelas H, Saravanan N (2007) Chemical bath deposition of nickel sulphide (Ni4S3) thin films. J Sci Technol 8:252

    Google Scholar 

  29. Ben Assaker I, Ganouni M, Lamouchi A, Chtourou R (2014) Physicals and electrochemical properties of ZnIn2S4 thin films grown by electrodeposition route. Superlattices Microstruct 75:159–170

    Article  Google Scholar 

  30. Roy P, Srivastava SK (2006) Chemical bath deposition of MoS2 thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphur. Thin Solid Films 496:293–298

    Article  Google Scholar 

  31. Albu-Yaron A, Levy-Clement C, Hutchison JL (1999) A study on MoS2 thin films electrochemically deposited in ethylene glycol at 165 °C. Electrochem Solid State Lett 2(12):627–630

    Article  Google Scholar 

  32. Warren BE (1990) X-ray diffraction. Dover, New York

    Google Scholar 

  33. Sahay PP, Nath RK (2008) Al-doped ZnO thin films as methanol sensors. Sens Actuators B 2:654–659

    Article  Google Scholar 

  34. Thanikaikarasan S, Mahalingam T, Raja M, Kim T (2009) Characterization of electroplated FeSe thin films. J Mater Sci 20:727–734. doi:10.1007/s10854-008-9794-y

    Google Scholar 

  35. Murugesan S, Akkineni A, Chou BP, Glaz MS, Vanden Bout DA, Stevenson KJ (2013) Room temperature electrodeposition of molybdenum sulfide for catalytic and photoluminescence applications. ACS Nano 7(9):8199–8205

    Article  Google Scholar 

  36. Akikusa J, Sum K (2002) Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/n-TiO2 cells. Int J Hydrog Energy 27:863

    Article  Google Scholar 

  37. Kokate AV, Suryavanshi UB, Bhosale CH (2006) Structural, compositional, and optical properties of electrochemically deposited stoichiometric CdSe thin films from non-aqueous bath. Solar Energy 80:156–160

    Article  Google Scholar 

  38. Bhatt R, Bhaumik I, Ganesamoorthy S, Karnal AK, Swami MK, Patel HS, Gupta PK (2012) Urbach tail and bandgap analysis in near stoichiometric LiNbO3 crystals. Phys Status Solidi A 209(1):176–180

    Article  Google Scholar 

  39. Wang YG, Lau SP, Lee HW, Yu SF, Tay BK (2003) Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J Appl Phys 94:354

    Article  Google Scholar 

  40. Ponomarev EA, Albu Yaron A, Tenne R, Levy-Clement C (1997) Electrochemical deposition of quantized particle MoS2 thin films. J Electrochem Soc 144(10):1277–1279

    Article  Google Scholar 

  41. Ansari SA, Ansari MS, Cho MH (2016) Metal free earth abundant elemental red phosphorus: a new class of visible light photocatalyst and photoelectrode materials. Phys Chem Chem Phys 18:3921–3928

    Article  Google Scholar 

  42. Gannouni M, Assaker IB, Chtourou R, Ben I (2014) Experimental investigation of the effect of indium content on the CuIn5S8 electrodes using electrochemical impedance spectroscopy. Mater Res Bull 61:519–527

    Article  Google Scholar 

  43. Mishra SK, Kumar D, Biradar AM, Rajesh (2012) Electrochemical impedance spectroscopy characterization of mercaptopropionic acid capped ZnS nanocrystal based bioelectrode for the detection of the cardiac biomarker—myoglobin. J Bioelectrochem 88:118–126

    Article  Google Scholar 

  44. Messaoudi O, Assaker IB, Gannouni M, Souissi A, Makhlouf H, Bardaoui A, Chtourou R (2016) Structural, morphological and electrical characteristics of electrodeposited Cu2O: effect of deposition time. Appl Surf Sci 366:383–388

    Article  Google Scholar 

  45. Attia A, Zukalova M, Pospisil L, Kavan L (2007) Electrochemical impedance spectroscopy of mesoporous Al-stabilized TiO2 (anatase) in aprotic medium. J Solid State Electrochem 11:1163–1169

    Article  Google Scholar 

  46. Joseph T, Anand S (2009) Synthesis and characterization of MoS2 films for photoelectrochemical cells. Sains Malays 38(1):85–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lamouchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamouchi, A., Assaker, I.B. & Chtourou, R. Effect of annealing temperature on the structural, optical, and electrical properties of MoS2 electrodeposited onto stainless steel mesh. J Mater Sci 52, 4635–4646 (2017). https://doi.org/10.1007/s10853-016-0707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0707-9

Keywords

Navigation