Journal of Materials Science

, Volume 52, Issue 8, pp 4278–4287 | Cite as

Structure of \(\langle 110 \rangle \)-tilt boundaries in cubic zirconia

  • Kazutoshi Inoue
  • Bin Feng
  • Naoya Shibata
  • Motoko Kotani
  • Yuichi Ikuhara
Interfaces and Intergranular Boundaries


Atomic structures of \(\langle 110 \rangle \)-symmetrical tilt grain boundaries in yttria-stabilized cubic zirconia are investigated from a mathematical perspective. We predicted the unique arrangement of structural units along the grain boundaries which was confirmed experimentally by atomic-resolution scanning transmission electron microscopy.


Grain Boundary Scanning Transmission Electron Microscopy HAADF Image Asymmetrical Arrangement Farey Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the Elements Strategy Initiative for Structural Materials by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and the JSPS Grant-in-Aid for Scientific Research (A) (No. 15H02290) and (C) (No. 15K06420). A part of this work was conducted at Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by “Nanotechnology Platform” of the MEXT, Japan.


  1. 1.
    Ranganathan S (1966) On the geometry of coincidence-site lattices. Acta Crystallogr 21:197–199CrossRefGoogle Scholar
  2. 2.
    Bishop GH, Chalmers B (1968) A coincidence ledge—dislocation description of grain boundaries. Scr Metall 2:133–140CrossRefGoogle Scholar
  3. 3.
    Sutton AP, Vitek V (1980) On the coincidence site lattice and DSC dislocation network model of high angle grain boundary structure. Scr Metall 14:129–132CrossRefGoogle Scholar
  4. 4.
    Sutton AP, Vitek V (1983) On the structure of tilt boundaries in cubic metals I. Symmetrical tilt boundaries. Philos Trans R Soc Lond A 309:1–36CrossRefGoogle Scholar
  5. 5.
    Sutton AP, Vitek V (1983) On the structure of tilt boundaries in cubic metals II. Asymmetrical tilt boundaries. Philos Trans R Soc Lond A 309:37–54CrossRefGoogle Scholar
  6. 6.
    Sutton AP, Vitek V (1983) On the structure of tilt boundaries in cubic metals III. Generalizations of the structural study and implications for the properties of grain boundaries. Philos Trans R Soc Lond A 309:55–68CrossRefGoogle Scholar
  7. 7.
    Scott HG (1975) Phase relationships in the zirconia-yttria system. J Mater Sci 10:1527–1535. doi: 10.1007/BF01031853 CrossRefGoogle Scholar
  8. 8.
    Shibata N, Oba F, Yamamoto T, Ikuhara Y (2004) Structure, energy and solute segregation behaviour of [110] symmetric tilt grain boundaries in yttria-stabilized cubic zirconia. Philos Mag 84(23):2381–2415CrossRefGoogle Scholar
  9. 9.
    Feng B, Yokoi T, Kumamoto A, Yoshiya M, Ikuhara Y, Shibata N (2016) Atomically ordered solute segregation behaviour in an oxide grain boundary. Nat Commun 7:11079CrossRefGoogle Scholar
  10. 10.
    Ikuhara Y (2011) Grain boundary atomic structures and light-element visualization in ceramics: combination of Cs-corrected scanning transmission electron microscopy and first-principles calculations. J Electron Microsc 60(S1):S173–S188Google Scholar
  11. 11.
    Sutton AP, Balluffi RW, Vitek V (1981) On intrinsic secondary grain-boundary dislocation arrays in high-angle grain boundaries. Scr Metall 15(9):989–994CrossRefGoogle Scholar
  12. 12.
    Pond RC, Smith DA, Vitek V (1979) Computer simulation of \(\langle 110\rangle \) tilt boundaries: structure and symmetry. Acta Metall 27:235–241CrossRefGoogle Scholar
  13. 13.
    Nakashima H, Takeuchi M (2000) Grain boundary energy and structure of \(\alpha \)-Fe \(\langle 110\rangle \) symmetric tilt boundary. Tetsu-to-Hagane 86(5):357–362Google Scholar
  14. 14.
    Tanaka N, Mizuguchi T, Ikeda K, Nakashima H (2004) Atomic and electronic structure of \(\langle 110\rangle \) symmetric tilt boundaries in palladium. Mater Trans 45(7):2099–2105CrossRefGoogle Scholar
  15. 15.
    Tschopp MA, Coleman SP, McDowell DL (2015) Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals. Integr Mater Manuf Innov 4(11):1Google Scholar
  16. 16.
    Inoue K, Saito M, Wang Z-C, Kotani M, Ikuhara Y (2015) On the periodicity of \(\langle 001\rangle \) symmetrical tilt grain boundaries. Mater Trans 56(3):281–287CrossRefGoogle Scholar
  17. 17.
    Inoue K, Saito M, Wang Z-C, Kotani M, Ikuhara Y (2015) On the decomposition formula of \(\langle 001 \rangle \) symmetrical tilt grain boundaries. Mater Trans 56(12):1945–1952CrossRefGoogle Scholar
  18. 18.
    Inoue K, Saito M, Chen C, Kotani M, Ikuhara Y (2016) Mathematical analysis and STEM observations of arrangement of structural units in \(\langle 001 \rangle \) symmetrical tilt grain boundaries. Microscopy 56(12):1945–1952Google Scholar
  19. 19.
    Pennycook SJ, Jesson DE (1991) High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37(1–4):14–38CrossRefGoogle Scholar
  20. 20.
    Sato Y, Mizoguchi T, Oba F, Ikuhara Y, Yamamoto T (2005) Arrangement of multiple structural units in a [0001] \({\it {\Sigma}}49\) tilt grain boundary in ZnO. Phys Rev B 72:064109CrossRefGoogle Scholar
  21. 21.
    Grimmer H (1974) Coincidence-site lattices and complete pattern shift lattices in cubic crystals. Acta Crystallogr Sect A 30:197–207CrossRefGoogle Scholar
  22. 22.
    Bollmann W (1967) On the geometry of grain and phase boundaries I. General theory. Philos Mag 16(140):363–381CrossRefGoogle Scholar
  23. 23.
    Zhang W-Z, Purdy GR (1993) O-lattice analyses of interfacial misfit I. General considerations. Philos Mag A 68(2):279–290CrossRefGoogle Scholar
  24. 24.
    Zhang W-Z, Purdy GR (1993) O-lattice analyses of interfacial misfit II. Systems containing invariant lines. Philos Mag A 68(2):271–303Google Scholar
  25. 25.
    Feng B, Sugiyama I, Hojo H, Ohta H, Shibata N, Ikuhara Y (2016) Atomic structures and oxygen dynamics of CeO2 grain boundaries. Sci Rep 6:20288CrossRefGoogle Scholar
  26. 26.
    Sun R, Wang Z-C, Saito M, Shibata N, Ikuhara Y (2015) Atomistic mechanisms of nonstoichiometry-induced twin boundary structural transformation in titanium dioxide. Nat Commun 6:7120CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kazutoshi Inoue
    • 1
  • Bin Feng
    • 2
  • Naoya Shibata
    • 2
  • Motoko Kotani
    • 1
  • Yuichi Ikuhara
    • 1
    • 2
    • 3
  1. 1.WPI Research Center, Advanced Institute for Materials ResearchTohoku UniversityAoba-ku, SendaiJapan
  2. 2.Institute of Engineering Innovation, School of EngineeringThe University of TokyoTokyoJapan
  3. 3.Center for Elements Strategy Initiative for Structure MaterialsKyoto UniversityKyotoJapan

Personalised recommendations