Synthesis of Ti matrix composites reinforced with TiC particles: thermodynamic equilibrium and change in microstructure

Abstract

The evolution of TiC reinforcement during the high-temperature consolidation step of a particulate-reinforced Ti matrix composite has been studied. A four-step scenario has been highlighted starting with the dissolution of the smallest particles to reach C saturation of the Ti matrix, followed by a change in the TiC stoichiometry from the initial TiC0.96 composition to the equilibrium composition (TiC0.57). This change in composition induces an increase in both the total mass fraction of reinforcement and the particle diameter. The diameter increase promotes contact between individual particles in the most reinforced domains and initiates an aggregation phenomenon that is responsible for the observed high growth rate of particles for heat treatment times shorter than 1 h. Finally Ostwald ripening is responsible for the growth of particles for longer heat treatment times.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. 1

    Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. 2

    Lindroos VK, Talvitie MJ (1995) Recent advances in metal matrix composites. J Mater Process Technol 53:273–284. doi:10.1016/0924-0136(95)01985-N

    Article  Google Scholar 

  3. 3

    Miracle DB (2005) Metal matrix composites—from science to technological significance. Compos Sci Technol 65:2526–2540. doi:10.1016/j.compscitech.2005.05.027

    Article  Google Scholar 

  4. 4

    Liu Y, Chen LF, Tang HP et al (2006) Design of powder metallurgy titanium alloys and composites. Mater Sci Eng A 418:25–35. doi:10.1016/j.msea.2005.10.057

    Article  Google Scholar 

  5. 5

    Kondoh K (2015) Titanium metal matrix composites by powder metallurgy (PM) routes. In: Qian MA, Froes FH (eds) Titanium powder metallurgy. Elsevier, Oxford, pp 277–297

    Chapter  Google Scholar 

  6. 6

    Dumitrescu LFS, Hillert M, Sundman B (1999) A reassessment of Ti-C-N based on a critical review of available assessments of Ti-N and Ti-C. Zeitschrift fur Metallkunde 90:534–541

    Google Scholar 

  7. 7

    Wanjara P, Drew RAL, Root J, Yue S (2000) Evidence for stable stoichiometric Ti2C at the interface in TiC particulate reinforced Ti alloy composites. Acta Mater 48:1443–1450. doi:10.1016/S1359-6454(99)00453-X

    Article  Google Scholar 

  8. 8

    Quinn CJ, Kohlstedt Dl (1984) Solid-state reaction between titanium carbide and titanium metal. J Am Ceram Soc 67:305–310. doi:10.1111/j.1151-2916.1984.tb19527.x

    Article  Google Scholar 

  9. 9

    Erlin Z, Songyan Z, Zhaojun Z (2000) Microstructure of XDTM Ti-6Al/TiC composites. J Mater Sci 35:5989–5994. doi:10.1023/A:1026794810924

    Article  Google Scholar 

  10. 10

    Fruhauf JB, Roger J, Dezellus O et al (2012) Microstructural and mechanical comparison of Ti + 15%TiCp composites prepared by free sintering, HIP and extrusion. Mater Sci Eng A 554:22–32. doi:10.1016/j.msea.2012.05.096

    Article  Google Scholar 

  11. 11

    Rachinger WA (1948) A correction for the α 1 α 2 doublet in the measurement of widths of X-ray diffraction lines. J Sci Instrum 25:254. doi:10.1088/0950-7671/25/7/125

    Article  Google Scholar 

  12. 12

    Le Bail A (2005) Whole powder pattern decomposition methods and applications: a retrospection. Powder Diffr 20:316–326. doi:10.1154/1.2135315

    Article  Google Scholar 

  13. 13

    Louer D (1998) Advances in powder diffraction analysis. Acta Crystallogr. Sect A 54:922–933

    Article  Google Scholar 

  14. 14

    Storms EK (1967) The refractory carbides. Academic Press, New York

    Google Scholar 

  15. 15

    Bittner H, Goretzki H (1962) Magnetische Untersuchungen Der Carbide Tic, Zrc, Hfc, Vc, Nbc Und Tac. Mon Chem 93:1000. doi:10.1007/BF00905899

    Article  Google Scholar 

  16. 16

    Norton JT, Lewis RK (1963) Properties of non-stoichiometric metallic carbides. Advanced Metals Research Corp, Somerville

    Google Scholar 

  17. 17

    Rudy E, Bruckl C, Harmond DP (1965) Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Air Force Materials Laboratory, Research and Technology Division

  18. 18

    Ramqvist L (1968) Variation of lattice parameter and hardness with carbon content of group 4 b metal carbides. Jernkontorets Ann 152:517

    Google Scholar 

  19. 19

    Vicens J, Chermant JL (1972) Contribution to study of system titanium-carbon-oxygen. Revue Chim Minérale 9:557–567

    Google Scholar 

  20. 20

    Kiparisov SS, Narva VK, Kolupaeva SY (1975) Effect of titanium carbide composition on the properties of titanium carbide-steel materials. Poroshk Metall 7:41–44

    Google Scholar 

  21. 21

    Frage N, Levin L, Manor E et al (1996) Iron-titanium-carbon system. II. Microstructure of titanium carbide (TiCx) of various stoichiometries infiltrated with iron-carbon alloy. Scr Mater 35:799–803. doi:10.1016/1359-6462(96)00230-8

    Article  Google Scholar 

  22. 22

    Fernandes JC, Anjinho C, Amaral PM et al (2003) Characterisation of solar-synthesised TiCx (x = 0.50, 0.625, 0.75, 0.85, 0.90 and 1.0) by X-ray diffraction, density and Vickers microhardness. Mater Chem Phys 77:711–718

    Article  Google Scholar 

  23. 23

    Nishimura H, Kimura H (1956) Titanium-oxygen-carbon system. IV. Nippon Kinzoku Gakkaishi 20:589–592

    Google Scholar 

  24. 24

    Neumann G, Ettmayer P, Kieffer R (1972) System TiC-TiN-TiO. Monatshefte für Chemie 103:1130–1137

    Article  Google Scholar 

  25. 25

    Bish DL, Howard SA (1988) Quantitative phase analysis using the Rietveld method. J Appl Crystallogr 21:86–91

    Article  Google Scholar 

  26. 26

    León-Reina L, García-Maté M, Álvarez-Pinazo G et al (2016) Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations. J Appl Crystallogr 49:722–735. doi:10.1107/S1600576716003873

    Article  Google Scholar 

  27. 27

    Burzlaff H, Hountas A (1982) Computer program for the derivation of symmetry operations from the space-group symbols. J Appl Crystallogr 15:464–467. doi:10.1107/S0021889882012382

    Article  Google Scholar 

  28. 28

    McCusker LB, Von Dreele RB, Cox DE et al (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50. doi:10.1107/S0021889898009856

    Article  Google Scholar 

  29. 29

    Baldan A (2002) Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys—Part I: Ostwald ripening theories. J Mater Sci 37:2171–2202. doi:10.1023/A:1015388912729

    Article  Google Scholar 

  30. 30

    MacKay RA, Nathal MV (1990) γ′ coarsening in high volume fraction nickel-base alloys. Acta Metall Mater 38:993–1005. doi:10.1016/0956-7151(90)90171-C

    Article  Google Scholar 

  31. 31

    Jayanth CS, Nash P (1989) Factors affecting particle-coarsening kinetics and size distribution. J Mater Sci 24:3041–3052. doi:10.1007/BF01139016

    Article  Google Scholar 

  32. 32

    Kim Y-J, Chung H, Kang S-JL (2001) In situ formation of titanium carbide in titanium powder compacts by gas–solid reaction. Composites A 32:731–738. doi:10.1016/S1359-835X(99)00092-5

    Article  Google Scholar 

  33. 33

    Cadoff I, Nielsen JP (1953) Titanium-carbon phase diagram. J Met 5:248–252

    Google Scholar 

  34. 34

    van Loo FJJ, Bastin GF (1989) On the diffusion of carbon in titanium carbide. MTA 20:403–411. doi:10.1007/BF02653919

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted in the framework of the COMETTi project sponsored by the French national research agency (ANR) under the reference ANR-09-MAPR-0021. The authors wish to thank the “Centre Technologique des Microstructures” (CTµ, http://microscopies.univ-lyon1.fr) for help and advice during the SEM observations and the ‘‘Service Central d’Analyse, SCA, CNRS’’, and particularly P. James and L. Ayouni for chemical analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olivier Dezellus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roger, J., Gardiola, B., Andrieux, J. et al. Synthesis of Ti matrix composites reinforced with TiC particles: thermodynamic equilibrium and change in microstructure. J Mater Sci 52, 4129–4141 (2017). https://doi.org/10.1007/s10853-016-0677-y

Download citation

Keywords

  • Rietveld Refinement
  • Heat Treatment Time
  • Duplex Microstructure
  • Excess Kurtosis
  • Consolidation Step