Skip to main content
Log in

Measurement of interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) binary systems using diffusion multiples

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The design and development of novel titanium alloys for structural and biomedical applications require reliable thermodynamic and kinetic databases. In this study, diffusion behaviors of six Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) binary systems were systematically investigated at temperatures from 800 to 1200 °C using a set of five Ti–TiAl–Cr–Hf–Mo–Nb–V–Zr diffusion multiples. Concentration profiles of the six Ti–X binary systems were collected from binary regions of the diffusion multiples using electron probe microanalysis (EPMA). Both interdiffusion and impurity (dilute) diffusion coefficients in the Ti-rich bcc phase of these systems were extracted from the concentration profiles using the forward-simulation method. Twenty impurity diffusion coefficients of all the six elements in bcc Ti as well as Ti in bcc Zr at different temperatures obtained from this study are in excellent agreement with the literature data. The interdiffusion coefficients obtained from this study are also in good agreement with previous literature results. The large amount of new experimental data obtained from this study will be essential for establishing the mobility databases for the design and development of advanced titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Leyens C, Peters M (2003) Titanium and titanium alloys. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Lütjering G, Williams JC (2003) Titanium, 2nd edn. Springer, New York

    Book  Google Scholar 

  3. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33:477–486

    Article  Google Scholar 

  4. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    Article  Google Scholar 

  5. Niinomi M, Kuroda D, K-i Fukunaga, Morinaga M, Kato Y, Yashiro T, Suzuki A (1999) Corrosion wear fracture of new β type biomedical titanium alloys. Mater Sci Eng A 263:193–199

    Article  Google Scholar 

  6. Eisenbarth E, Velten D, Müller M, Thull R, Breme J (2004) Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25:5705–5713

    Article  Google Scholar 

  7. Song Y, Xu DS, Yang R, Li D, Wu WT, Guo ZX (1999) Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Mater Sci Eng A 260:269–274

    Article  Google Scholar 

  8. Wang BL, Li L, Zheng YF (2010) In vitro cytotoxicity and hemocompatibility studies of Ti–Nb, Ti–Nb–Zr and Ti–Nb–Hf biomedical shape memory alloys. Biomed Mater 5:044102

    Article  Google Scholar 

  9. González M, Peña J, Manero JM, Arciniegas M, Gil FJ (2009) Design and characterization of new Ti–Nb–Hf alloys. J Mater Eng Perform 18:490–495

    Article  Google Scholar 

  10. González M, Gil FJ, Manero JM, Peña J (2011) Characterization of two Ti–Nb–Hf–Zr alloys under different cold rolling conditions. J Mater Eng Perform 20:653–657

    Article  Google Scholar 

  11. González M, Salvagni E, Rodríguez-Cabello JC, Rupérez E, Gil FJ, Peña J, Manero JM (2013) A low elastic modulus Ti–Nb–Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading. J Biomed Mater Res A 101A:819–826

    Article  Google Scholar 

  12. González M, Peña J, Gil FJ, Manero JM (2014) Low modulus Ti–Nb–Hf alloy for biomedical applications. Mater Sci Eng C 42:691–695

    Article  Google Scholar 

  13. Neumann G, Tuijn C (2011) Self-diffusion and impurity diffusion in pure metals: handbook of experimental data. Elsevier, Oxford

    Google Scholar 

  14. Lee S-Y, Iijima Y, Hirano K-I (1991) Diffusion of chromium and palladium in β-titanium. Mater Trans JIM 32:451–456

    Article  Google Scholar 

  15. Sprengel W, Yamada T, Nakajima H (1997) Interdiffusion in binary β-titanium alloys. Defect Diff Forum 143–147:431–436

    Article  Google Scholar 

  16. Takahashi T, Matsuda N, Kubo S, Hino T, Komatsu M, Hisayuki K (2004) Interdiffusion in the β solid solution of Ti–Al–Cr system. J Jpn Inst Light Met 54:280–286

    Article  Google Scholar 

  17. Hartley CS, Steedly JE, Parsons LD (1965) Binary interdiffusion in body-centered cubic transition metal systems. In: Wheeler JA, Winslow FR (eds) Diffusion in body-centered cubic metals. American Society for Metals, Metals Park, pp 51–75

    Google Scholar 

  18. Fedotov SG, Chudinov MG, Konstantinov KM (1969) Mutual diffusion in the systems Ti-V, Ti–Nb, Ti–Ta, and Ti–Mo. Fiz Met Metalloved 27:111–114

    Google Scholar 

  19. Heumann T, Imm R (1978) Study of the Kirkendall effect in bcc titanium–molybdenum alloys. Forschungsberichte des Landes Nordrhein-Westfalen 2781:5–25

    Google Scholar 

  20. Majima K, Isomoto T (1982) The sintering characteristics and diffusion processes of the titanium–molybdenum binary system. J Jpn Soc Powder Metall 29:280–285

    Article  Google Scholar 

  21. Kale G, Patil R (1994) Chemical diffusion in titanium–molybdenum system. Mater Trans JIM 35:439–444

    Article  Google Scholar 

  22. Thibon I, Ansel D, Boliveau M (1998) Interdiffusion in the β Mo–Ti solid solution at high temperatures. Z Metallkd 89:187–191

    Google Scholar 

  23. Feng L, Li J, Huang L, Chang H, Cui Y, Zhou L (2009) Interdiffusion behavior of Ti–Mo binary system in β phase. Chin J Nonferrous Met 19:1766–1771

    Google Scholar 

  24. Roux F, Vignes A (1970) Diffusion dans les systèmes Ti–Nb, Zr–Nb, V–Nb, Mo–Nb, W–Nb. Rev Phys Appl 5:393–405

    Article  Google Scholar 

  25. Polyanskii VM, Podgorskii BN, Makarovets OD (1971) Diffusion processe in the Ti–Nb system. Svar Proizvod 3:9–10

    Google Scholar 

  26. Gryzunov VI, Aitbaev BK, Omasheva G, Fryzunova TI (1993) Interdiffusion in the titanium–niobium system. Seriya Khim 6:29–33

    Google Scholar 

  27. Ugaste YE, Zajkin YA (1975) Investigation of mutual diffusion in titanium–vanadium and titanium–niobium systemts. Fiz Met Metalloved 40:567–575

    Google Scholar 

  28. Le Gall G, Ansel D, Debuigne J (1987) Interdiffusion in the body cubic centered β-phase of titanium–hafnium alloys. Acta Metall 35:2297–2305

    Article  Google Scholar 

  29. Raghunathan VS, Tiwari GP, Sharma BD (1972) Chemical diffusion in the β phase of the Zr–Ti alloy system. Metall Trans 3:783–788

    Article  Google Scholar 

  30. Brunsch A, Steeb S (1974) Diffusion investigation in the Ti–Zr system by means of a microprobe. Z Naturforsch A 29:1319–1324

    Article  Google Scholar 

  31. Bhanumurthy K, Laik A, Kale G (2008) Novel method of evaluation of diffusion coefficients in Ti–Zr system. Defect Diff Forum 279:53–62

    Article  Google Scholar 

  32. Thibon I, Ansel D, Gloriant T (2009) Interdiffusion in β-Ti–Zr binary alloys. J Alloys Comp 470:127–133

    Article  Google Scholar 

  33. Boltzmann L (1894) Zur integration der diffusionsgleichung bei variabeln diffusionscoefficienten. Ann Phys 289:959–964

    Article  Google Scholar 

  34. Matano C (1933) On the relation between the diffusion-coefficients and concentrations of solid metals (the nickel–copper system). Jpn J Phys 8:109–113

    Google Scholar 

  35. den Broeder FJA (1969) A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems. Scr Metall 3:321–325

    Article  Google Scholar 

  36. Hall LD (1953) An analytical method of calculating variable diffusion coefficients. J Chem Phys 21:87–89

    Article  Google Scholar 

  37. Zhao J-C (2001) A combinatorial approach for structural materials. Adv Eng Mater 3:143–147

    Article  Google Scholar 

  38. Zhao J-C, Jackson MR, Peluso LA, Brewer LN (2002) A diffusion multiple approach for the accelerated design of structural materials. MRS Bull 27:324–329

    Article  Google Scholar 

  39. Zhao J-C (2004) Reliability of the diffusion-multiple approach for phase diagram mapping. J Mater Sci 39:3913–3925. doi:10.1023/B:JMSC.0000031472.25241.c5

    Article  Google Scholar 

  40. Zhao J-C (2007) Methods for phase diagram determination. Elsevier, Amsterdam, pp 246–272

    Book  Google Scholar 

  41. van Loo FJJ (1990) Multiphase diffusion in binary and ternary solid-state systems. Prog Solid State Chem 20:47–99

    Article  Google Scholar 

  42. Zhang Q, Zhao J-C (2013) Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simulation method. Intermetallics 34:132–141

    Article  Google Scholar 

  43. Zhang Q, Zhao J-C (2014) Impurity and interdiffusion coefficients of the Cr–X (X = Co, Fe, Mo, Nb, Ni, Pd, Pt, Ta) binary systems. J Alloys Compd 604:142–150

    Article  Google Scholar 

  44. ASM Alloy Phase Diagram Center. http://www1.asminternational.org/asmenterprise/apd/. Accessed Dec 2014

  45. Darken LS (1948) Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans AIME 175:184–201

    Google Scholar 

  46. Araki H, Yamane T, Nakatuka T, Minamino Y (2006) Diffusion of chromium in β-Ti under high pressure. Z Metallkd 97:22–27

    Google Scholar 

  47. Gibbs GB, Graham D, Tomlin DH (1963) Diffusion in titanium and titanium–niobium alloys. Philos Mag 8:1269–1282

    Article  Google Scholar 

  48. Pavlinov LB (1967) Diffusion of metal impurities in zirconium and titanium (Heterodiffusion of metallic impurities in body centered phases of doped zirconium and titanium, determining diffusion coefficients via radioactive isotopes). Phys Met Metall 24:70–74

    Google Scholar 

  49. Peart RF, Tomlin DH (1962) Diffusion of solute elements in beta-titanium. Acta Metall 10:123–134

    Article  Google Scholar 

  50. Pontau AE, Lazarus D (1979) Diffusion of titanium and niobium in bcc Ti–Nb alloys. Phys Rev B 19:4027–4037

    Article  Google Scholar 

  51. Murdock JF, Lundy TS, Stansbury EE (1964) Diffusion of Ti44 and V48 in titanium. Acta Metall 12:1033–1039

    Article  Google Scholar 

  52. Araki H, Minamino Y, Yamane T, Nakatsuka T, Miyamoto Y (1996) Pressure dependence of anomalous diffusion of zirconium in β-titanium. Metall Trans A 27:1807–1814

    Article  Google Scholar 

  53. Ahmed T, Belova IV, Evteev AV, Levchenoko EV, Murch GE (2015) Comparison of the Sauer-Freise and Hall methods for obtaining interdiffusion coefficients in binary alloys. J Phase Equilib Diffu 36:366–374

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports by grants from the Major State Basic Research Development Program of China (No. 2014CB6644002 and No. 2012CB619501) and the National Key Research Development Plan (No. 2016YFB0701301) are gratefully acknowledged. The work is also partially supported by the Project of Innovation-driven Plan in Central South University (No. 2015CX004) and the outstanding graduate project of Advanced Non-ferrous Metal Structural Materials and Manufacturing Collaborative Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ge-Mei Cai or Ji-Cheng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, Q., Chen, Z. et al. Measurement of interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) binary systems using diffusion multiples. J Mater Sci 52, 3255–3268 (2017). https://doi.org/10.1007/s10853-016-0614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0614-0

Keywords

Navigation