Journal of Materials Science

, Volume 52, Issue 6, pp 3062–3073 | Cite as

The evolution of microstructure and microhardness in a biomedical Ti–35Nb–7Zr–5Ta alloy

  • M. Hendrickson
  • S. A. Mantri
  • Y. Ren
  • T. Alam
  • V. Soni
  • B. Gwalani
  • M. Styles
  • D. Choudhuri
  • R. BanerjeeEmail author
Original Paper


β-Ti alloys are promising candidates for biomedical applications due to their high strength, high corrosion and wear resistance, and low elastic modulus. This study focuses on phase evolution in a low modulus Ti–35Nb–7Zr–5Ta (TNZT) alloy, systematically examined via isochronal and isothermal annealing, and its influence on microhardness. The observations indicate that the highest microhardness value was achieved at an aging temperature of 400 °C. The microstructural evolution at this temperature was investigated via systematic isothermal annealing treatments, and the results indicate a progressive transformation from β + ω + O’ (solution treated and quenched) to β + ω + α (after isothermal annealing at 400 °C/6 h), with the dissolution of the metastable orthorhombic O’ phase and the formation of the stable α phase. The maximum hardness corresponded to a highly refined mixture of co-existing ω and α phases after prolonged annealing for 48 h at 400 °C. The coexistence of both ω and α phases after such prolonged annealing indicates that at 400 °C, ω is in metastable equilibrium, despite the concurrent precipitation of the equilibrium α phase.


Zone Axis Phase Fraction Isothermal Annealing Atom Probe Tomography Annealed Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



DC and RB would like to thank the funding sources NSF Grant #1309277 and #1435611.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Long MJ, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639CrossRefGoogle Scholar
  2. 2.
    Wang K (1996) The use of titanium for medical applications in the USA. Mater Sci Eng A 213:134–137CrossRefGoogle Scholar
  3. 3.
    Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRefGoogle Scholar
  4. 4.
    Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mater Sci Eng C 26:1269–1277CrossRefGoogle Scholar
  5. 5.
    Niinomi M (2008) Biologically and mechanically biocompatible titanium alloys. Mater Trans 49(10):2170–2178CrossRefGoogle Scholar
  6. 6.
    Bombač D, Brojan M, Fajfar P, Kosel F, Turk R (2007) Review of materials in medical applications. RMZ Mater Geoenviron 54(4):471–499Google Scholar
  7. 7.
    Rao S, Uchida T, Tateishi T, Okazaki T, Asao Y (1996) Effect of Ti, Al and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. J Biomed Mater Eng 6(2):79–86Google Scholar
  8. 8.
    Walker PR, LeBlanc J, Sikorska M (1989) Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 28(9):3911–3915CrossRefGoogle Scholar
  9. 9.
    Borowy KH, Krammer KH (1985) On the properties of a new Titanium alloy (Ti–5Al–2.5Fe) as implant material. Titanium 84, Science and Technology, vol 2. Desche Ges Metallkunde EV, Munich. pp 1381–1386Google Scholar
  10. 10.
    Ahmed T, Long M, Silvestri J, Ruiz C, Rack HJ (1996) A new low modulus, biocompatible titanium alloy, In Titanium 95: Science and Technology. The Institute for Materials, Birmingham, UK, pp 1760–1767Google Scholar
  11. 11.
    Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Mater Sci Eng A 243:244–249CrossRefGoogle Scholar
  12. 12.
    Ferrandini PL, Cardoso FF, Souza SA, Afonso CR, Caram R (2007) Aging response of the Ti–35Nb–7Zr–5Ta and Ti–35Nb–7Ta alloys. J Alloy Compd 433:207–210CrossRefGoogle Scholar
  13. 13.
    Banerjee R, Nag S, Stechschulte J, Fraser HL (2004) Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials 25:3413–3419CrossRefGoogle Scholar
  14. 14.
    Nag S, Banerjee R, Fraser HL (2005) Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater Sci Eng C 25:357–362CrossRefGoogle Scholar
  15. 15.
    Nag S, Banerjee R (2012) Laser deposition and deformation behavior of Ti–Nb–Zr–Ta alloys for orthopedic implants. J Mech Behav Biomed Mater 16:21–28CrossRefGoogle Scholar
  16. 16.
    Li SJ, Yang R, Niinomi M, Hao YL, Cui YY, Guo ZX (2005) Phase transformation during aging and resulting mechanical properties of two Ti–Nb–Ta–Zr alloys. Mater Sci Technol 21(6):678–686CrossRefGoogle Scholar
  17. 17.
    Nakai M, Niinomi M, Oneda T (2012) Improvement in fatigue strength of biomedical b-type Ti–Nb–Ta–Zr alloy while maintaining low Young’s modulus through optimizing ω-phase precipitation. Metall Mater Trans A 43a:294CrossRefGoogle Scholar
  18. 18.
    Lope ESN, Cremasco A, Afonso CRM, Caram R (2011) Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Mater Charact 62:673–680CrossRefGoogle Scholar
  19. 19.
    Sakaguchi N, Niinomi M, Akahori T, Takeda J, Toda H (2005) Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Mater Sci Eng C 25:363–369CrossRefGoogle Scholar
  20. 20.
    Gysler A, Lutjering G, Gerold V (1974) Deformation behavior of age hardened Ti-Mo alloys. Acta Metall 22:901–909CrossRefGoogle Scholar
  21. 21.
    Williams J, Hickman B, Marcus H (1971) The effect of omega phase on the mechanical properties of titanium alloys. Metall Trans 2:1913Google Scholar
  22. 22.
    Tane M, Nakano T, Kuramoto S, Hara M, Niinomi M, Takesue N, Yano T, Nakajima H (2011) Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: cold working and oxygen effects. Acta Mater 59:6975–6988CrossRefGoogle Scholar
  23. 23.
    Tang X, Ahmed T, Rack HJ (2000) Phase transformations in Ti–Nb–Ta and Ti–Nb–Ta–Zr alloys. J Mater Sci 35:1805–1811. doi: 10.1023/A:1004792922155 CrossRefGoogle Scholar
  24. 24.
    Tane M, Nakano T, Kuramoto S, Niinomi M, Takesue N, Nakajima H (2013) ω Transformation in cold-worked Ti–Nb–Ta–Zr–O alloys with low body-centered cubic phase stability and its correlation with their elastic properties. Acta Mater 61:139–150CrossRefGoogle Scholar
  25. 25.
    Qazi JI, Marquardt TB, Allard LF, Rack HJ (2005) Phase transformations in Ti–35Nb–7Zr–5Ta (0.06–0.68)O alloys. Mater Sci Eng C 25:389–397CrossRefGoogle Scholar
  26. 26.
    Wei Q, Wang L, Fu Y, Qin J, Lu W, Zhang D (2011) Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater Des 32:2934–2939CrossRefGoogle Scholar
  27. 27.
    Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL (2009) ω-Assisted nucleation and growth of a precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β-titanium alloy. Acta Mater 57:2136–2147CrossRefGoogle Scholar
  28. 28.
    Zheng Y, Williams R, Sosa J, Wang Y, Banerjee R, Fraser H (2016) The role of the ω phase on the non-classical precipitation of the α phase in metastable β-titanium alloys. Scr Mater 111:81–84CrossRefGoogle Scholar
  29. 29.
    Zheng Y, Williams R, Wang D, Shi R, Nag S, Kami P, Sosa J, Banerjee R, Wang Y, Fraser H (2016) Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys. Acta Mater 103:850–858, 103Google Scholar
  30. 30.
    Li T, Kent D, Sha G, Stephenson LT, Ceguerra AV, Ringer SP, Dargusch MS, Cairney JM (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater 106:353–366CrossRefGoogle Scholar
  31. 31.
    Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on β → α, α″ transformations in a metastable β-titanium alloy. Mater Sci Eng A 312:182–188CrossRefGoogle Scholar
  32. 32.
    Li T, Kent D, Sha G, Dargusch MS, Cairney JM (2015) The mechanism of x-assisted a phase formation in near β-Ti alloys. Scr Mater 104:75–78CrossRefGoogle Scholar
  33. 33.
    Mantri S, Choudhuri D, Behera A, Cotton J, Kumar N, Banerjee R (2015) Influence of fine-scale alpha precipitation on the mechanical properties of the beta titanium alloy beta-21S. Metall Mater Trans A 46(7):2803–2808CrossRefGoogle Scholar
  34. 34.
    Hammersley AP (1995) ESRF Internal Report, EXP/AH/95-01, FIT2D V5.18 Reference Manual V1.6Google Scholar
  35. 35.
    Toby B (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  36. 36.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  37. 37.
    Cheary RW, Coelho AA, Cline JP (2004) Fundamental parameters line profile fitting in laboratory diffractometers. J Res Nat Inst Stand Technol 109:1–25CrossRefGoogle Scholar
  38. 38.
    Chen SL, Daniel S, Zhang F, Chang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and applications. CALPHAD 26:175–188CrossRefGoogle Scholar
  39. 39.
    Banerjee S, Mukhopadhyay P (2010) Phase transformations: examples from titanium and zirconium alloys. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Zheng Y, Williams REA, Nag S, Banerjee R, Fraser HL, Banerjee D (2016) The effect of alloy composition on instabilities in the β phase of titanium alloys. Scr Mater 116:49–52CrossRefGoogle Scholar
  41. 41.
    Cook HE (1974) A theory of the omega transformation. Acta Metall 22:239–247CrossRefGoogle Scholar
  42. 42.
    Zheng Y, Banerjee D, Fraser HL (2016) A nano-scale instability in the β phase of dilute Ti–Mo alloys. Scripta Mater 116:131–134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Hendrickson
    • 1
  • S. A. Mantri
    • 1
  • Y. Ren
    • 2
  • T. Alam
    • 1
  • V. Soni
    • 1
  • B. Gwalani
    • 1
  • M. Styles
    • 3
  • D. Choudhuri
    • 1
  • R. Banerjee
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.X-ray Science Division, Advanced Photon SourceArgonne National LaboratoryDentonUSA
  3. 3.CSIRO ManufacturingClayton South ClaytonAustralia

Personalised recommendations