Advertisement

Journal of Materials Science

, Volume 52, Issue 6, pp 3048–3061 | Cite as

Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties

  • Erwan Gicquel
  • Céline Martin
  • José Garrido Yanez
  • Julien BrasEmail author
Original Paper

Abstract

In this work, we explored the elaboration of new smart paper by coating fiber-based materials with CNC for possible use in packaging. Particularly, we investigated application of a 100% CNC layer onto a substrate. Mainly due to the cost and limited availability of CNC on a large scale, few studies have examined these opportunities. Several layers of CNC were deposited onto a paper material using the bar-coating process to improve relevant properties of the paper surface. Surface analyses (atomic force microscopy, scanning electron microscopy, and transmission electron microscopy) were performed to elucidate the CNC network at the paper surface. Structural and mechanical properties of the final materials were evaluated. Results of general interest were obtained about barrier properties. The air barrier and grease resistance improve only with the paper coated with CNC. To complete this research, a small amount of polyethylene glycol was added to reinforce the brittle CNC coating and clearly enhance barrier properties of the paper.

Keywords

Barrier Property Paper Sample Paper Substrate Paper Surface Coated Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been partially supported by the PolyNat Carnot Institute (Investissements d’Avenir—Grant agreement n°ANR-11-CARN-007-01). This research has been possible, thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). We would like to thank Berthine Khelifi (Grenoble Institute of Technology) for her expertise in providing SEM & FE-SEM imaging and Cécile Sillard (Grenoble Institute of Technology) for her expertise in AFM.

References

  1. 1.
    Rånby BG, Ribi E (1950) Über den feinbau der zellulose. Experientia 6:12–14CrossRefGoogle Scholar
  2. 2.
    Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633. doi: 10.1038/184632a0 CrossRefGoogle Scholar
  3. 3.
    Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  4. 4.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  5. 5.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  6. 6.
    Yang X, Shi K, Zhitomirsky I, Cranston ED (2015) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109. doi: 10.1002/adma.201502284 CrossRefGoogle Scholar
  7. 7.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. doi: 10.1016/j.mattod.2013.06.004 CrossRefGoogle Scholar
  8. 8.
    Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  9. 9.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765. doi: 10.3390/polym2040728 CrossRefGoogle Scholar
  10. 10.
    Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346. doi: 10.1021/bm500524s CrossRefGoogle Scholar
  11. 11.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  12. 12.
    Lin N, Gèze A, Wouessidjewe D et al (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl Mater Interfaces 8:6880–6889. doi: 10.1021/acsami.6b00555 CrossRefGoogle Scholar
  13. 13.
    Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80. doi: 10.2174/187221013804484854 CrossRefGoogle Scholar
  14. 14.
    García A, Gandini A, Labidi J et al (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38. doi: 10.1016/j.indcrop.2016.06.004 CrossRefGoogle Scholar
  15. 15.
    Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84:211–215CrossRefGoogle Scholar
  16. 16.
    Herrera MA, Mathew AP, Oksman K (2014) Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 112:494–501. doi: 10.1016/j.carbpol.2014.06.036 CrossRefGoogle Scholar
  17. 17.
    Lee K-Y, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRefGoogle Scholar
  18. 18.
    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B 52:791–806. doi: 10.1002/polb.23490 CrossRefGoogle Scholar
  19. 19.
    Brodin FW, Gregersen OW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—A review. Nord Pulp Pap Res J 29:156–166CrossRefGoogle Scholar
  20. 20.
    Bardet R, Bras J (2014) Cellulose nanofibers and their use in paper industry. In: Handbook ofgreen materials. Processing technologies, properties and applications, pp 207–232Google Scholar
  21. 21.
    Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258. doi: 10.1016/j.memsci.2008.04.009 CrossRefGoogle Scholar
  22. 22.
    Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498. doi: 10.1016/j.eurpolymj.2008.05.024 CrossRefGoogle Scholar
  23. 23.
    Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi: 10.1021/bm801193d CrossRefGoogle Scholar
  24. 24.
    Aspler JS, Zou X, Laleg M et al (2015) Print quality on thin coatings of cellulose nanocrystals. FPINNOVATIONS, WO 2015168784 A1Google Scholar
  25. 25.
    Gicquel E, Martin C, Bras J (2016) Cellulose nanocrystals as new bio based coating layer for improving fiber-based barrier properties, presented at Tappi Nano conference in Grenoble, FranceGoogle Scholar
  26. 26.
    Gicquel E, Bras J, Martin C et al (2016) Stimuli responsive cellulose nanocrystals hydrogel for smart applications, presented at ACS conference, San Diego, USAGoogle Scholar
  27. 27.
    Mascheroni E, Rampazzo R, Ortenzi MA et al (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23:779–793. doi: 10.1007/s10570-015-0853-2 CrossRefGoogle Scholar
  28. 28.
    Fujisawa S, Okita Y, Fukuzumi H et al (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRefGoogle Scholar
  29. 29.
    Aulin C, Ström G (2013) Multilayered alkyd resin/nanocellulose coatings for use in renewable packaging solutions with a high level of moisture resistance. Ind Eng Chem Res 52:2582–2589. doi: 10.1021/ie301785a CrossRefGoogle Scholar
  30. 30.
    Lavoine N, Bras J, Desloges I (2014) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci 131:40106. doi: 10.1002/app.40106 CrossRefGoogle Scholar
  31. 31.
    Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2010) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134. doi: 10.1007/s10570-010-9474-y CrossRefGoogle Scholar
  32. 32.
    Penttilä A, Sievänen J, Torvinen K et al (2013) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 20:1413–1424. doi: 10.1007/s10570-013-9883-9 CrossRefGoogle Scholar
  33. 33.
    Li F, Biagioni P, Bollani M et al (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504. doi: 10.1007/s10570-013-0015-3 CrossRefGoogle Scholar
  34. 34.
    Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016. doi: 10.1021/ma000417p CrossRefGoogle Scholar
  35. 35.
    Pignon F (2016) Structure and rheological behavior of CNC dispersions probed by local birefringence and in-situ Rheo-SAXS, presented at Tappi nano conference in Grenoble, FranceGoogle Scholar
  36. 36.
    Lavoine N, Desloges I, Khelifi B, Bras J (2014) Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J Mater Sci 49:2879–2893. doi: 10.1007/s10853-013-7995-0 CrossRefGoogle Scholar
  37. 37.
    Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154. doi: 10.1039/C6NR03054H CrossRefGoogle Scholar
  38. 38.
    Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574. doi: 10.1007/s10570-009-9393-y CrossRefGoogle Scholar
  39. 39.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi: 10.1016/j.carbpol.2012.05.026 CrossRefGoogle Scholar
  40. 40.
    McGonigle E-A, Liggat JJ, Pethrick RA et al (2004) Permeability of N2, Ar, He, O2, and CO2 through as-extruded amorphous and biaxially oriented polyester films: dependence on chain mobility. J Polym Sci B 42:2916–2929. doi: 10.1002/polb.20141 CrossRefGoogle Scholar
  41. 41.
    Bardet R, Belgacem N, Bras J (2015) Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces 7:4010–4018. doi: 10.1021/am506786t CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Erwan Gicquel
    • 1
    • 2
    • 3
  • Céline Martin
    • 1
    • 2
    • 3
  • José Garrido Yanez
    • 1
    • 2
    • 3
  • Julien Bras
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Univ. Grenoble Alpes, LGP2GrenobleFrance
  2. 2.CNRS, LGP2GrenobleFrance
  3. 3.Agefpi, LGP2GrenobleFrance
  4. 4.Institut Universitaire de FranceParisFrance

Personalised recommendations