Skip to main content

Advertisement

Log in

A new superhard carbon allotrope: tetragonal C64

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel superhard carbon allotrope C64 is predicted which is composed of C28 cages. It is porous and exhibits distinct topologies including zigzag 5, 6, 8, 10 and 12-fold carbon rings. The elastic constants and phonon calculations reveal that C64 is mechanically and dynamically stable at ambient pressure. The hardness of C64 is 60.2 GPa. The tensile and shear strength calculations indicate that the lowest tensile and shear strengths have the almost same value of 48.1 GPa. For the electronic properties, the band structure calculations show that C64 is a quasi-direct band gap semiconductor with a band gap of 1.32 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Piskoti C, Yarger J, Zettl A (1998) C36, a newcarbon solid. Nature 393:771–774. doi:10.1038/31668

    Article  Google Scholar 

  2. Mao WL, H-k Mao, Eng PJ, Trainor TP, Newville M, C-c Kao, Heinz DL, Shu J, Meng Y, Hemley RJ (2003) Bonding changes in compressed superhard graphite. Science 302:425–427. doi:10.1126/science.1089713

    Article  Google Scholar 

  3. Yamanaka S, Kubo A, Inumaru K, Komaguchi K, Kini NS, Inoue T, Irifune T (2006) Electron conductive three-dimensional polymer of cuboidal C60. Phys Rev Lett 96:076602. doi:10.1103/PhysRevLett.96.076602

    Article  Google Scholar 

  4. Boulfelfel SE, Oganov AR, Leoni S (2012) Understanding the nature of “superhard graphite”. Sci Rep 2:471. doi:10.1038/srep00471

    Article  Google Scholar 

  5. Hu M, Zhao Z, Tian F, Oganov AR, Wang Q, Xiong M, Fan C, Wen B, He J, Yu D, Wang HT, Xu B, Tian Y (2013) Compressed carbon nanotubes: a family of new multifunctional carbon allotropes. Sci Rep 3:1331. doi:10.1038/srep01331

    Google Scholar 

  6. Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y (2014) Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–253. doi:10.1038/nature13381

    Article  Google Scholar 

  7. Li D, Tian F, Chu B, Duan D, Sha X, Lv Y, Zhang H, Lu N, Liu B, Cui T (2015) Ab initio structure determination of n-diamond. Sci Rep 5:13447. doi:10.1038/srep13447

    Article  Google Scholar 

  8. Amsler M, Flores-Livas JA, Marques MAL, Botti S, Goedecker S (2013) Prediction of a novel monoclinic carbon allotrope. Eur Phys J B 86:383. doi:10.1140/epjb/e2013-40639-4

    Article  Google Scholar 

  9. Lyakhov AO, Oganov AR (2011) Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2. Phys Rev B 84:092103. doi:10.1103/PhysRevB.84.092103

    Article  Google Scholar 

  10. Pokropivny A, Volz S (2012) ‘C8 phase’: supercubane, tetrahedral, BC-8 or carbon sodalite? Phys Status Solidi (b) 249:1704–1708. doi:10.1002/pssb.201248185

    Article  Google Scholar 

  11. Umemoto K, Wentzcovitch RM, Saito S, Miyake T (2010) Body-centered tetragonal C4: a viable sp 3 carbon allotrope. Phys Rev Lett 104:125504. doi:10.1103/PhysRevLett.104.125504

    Article  Google Scholar 

  12. Li Q, Ma Y, Oganov AR, Wang H, Wang H, Xu Y, Cui T, Mao HK, Zou G (2009) Superhard monoclinic polymorph of carbon. Phys Rev Lett 102:175506. doi:10.1103/PhysRevLett.102.175506

    Article  Google Scholar 

  13. Tian F, Dong X, Zhao Z, He J, Wang HT (2012) Superhard F-carbon predicted by ab initio particle-swarm optimization methodology. J Phys Conden Matt 24:165504. doi:10.1088/0953-8984/24/16/165504

    Article  Google Scholar 

  14. Xing M, Li B, Yu Z, Chen Q (2015) C2/m-carbon: structural, mechanical, and electronic properties. J Mater Sci 50:7104–7114. doi:10.1007/s10853-015-9266-8

    Article  Google Scholar 

  15. Zhu Q, Zeng Q, Oganov AR (2012) Systematic search for low-enthalpy sp 3 carbon allotropes using evolutionary metadynamics. Phys Rev B 85:201407. doi:10.1103/PhysRevB.85.201407

    Article  Google Scholar 

  16. Wang J, Chen C, Kawazoe Y (2011) Low-temperature phase transformation from graphite to sp 3 orthorhombic carbon. Phys Rev Lett 106:075501. doi:10.1103/PhysRevLett.106.075501

    Article  Google Scholar 

  17. Zhao Z, Xu B, Zhou XF, Wang LM, Wen B, He J, Liu Z, Wang HT, Tian Y (2011) Novel superhard carbon: c-centered orthorhombic C8. Phys Rev Lett 107:215502. doi:10.1103/PhysRevLett.107.215502

    Article  Google Scholar 

  18. Wang J-T, Chen C, Kawazoe Y (2012) Orthorhombic carbon allotrope of compressed graphite: ab initio calculations. Phys Rev B 85:033410. doi:10.1103/PhysRevB.85.033410

    Article  Google Scholar 

  19. Zhang M, Liu H, Du Y, Zhang X, Wang Y, Li Q (2013) Orthorhombic C32: a novel superhard sp 3 carbon allotrope. Phys Chem Chem Phys 15:14120–14125. doi:10.1039/c3cp51746b

    Article  Google Scholar 

  20. Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q, Ma Y (2013) First-principles structural design of superhard materials. J Chem Phys 138:114101. doi:10.1063/1.4794424

    Article  Google Scholar 

  21. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. doi:10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  22. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  23. Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106. doi:10.1103/PhysRevB.78.134106

    Article  Google Scholar 

  24. Hill R (1952) The Elastic behaviour of a crystalline aggregate. Proc Phys Soc A 65:349–354. doi:10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  25. Hoffmann R, Kabanov AA, Golov AA, Proserpio DM (2016) Homo citans and carbon allotropes: for an ethics of citation. Angew Chem Int Ed Engl 55:10962–10976. doi:10.1002/anie.201600655

    Article  Google Scholar 

  26. Karttunen AJ, Fässler TF, Linnolahti M, Pakkanen TA (2011) Structural principles of semiconducting group 14 clathrate frameworks. Inorg Chem 50:1733–1742. doi:10.1021/ic102178d

    Article  Google Scholar 

  27. Fan QY, Wei Q, Yan HY, Zhang MG, Zhang DY, Zhang JQ (2014) A new potential superhard phase of OsN2. Acta Phys Pol, A 126:740–746. doi:10.12693/APhysPolA.126.740

    Article  Google Scholar 

  28. Wu Z, Zhao E, Xiang H, Hao X, Liu X, Meng J (2007) Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76:054115. doi:10.1103/PhysRevB.76.054115

    Article  Google Scholar 

  29. Zhang Q, Wei Q, Yan H, Fan Q, Zhu X, Zhang J, Zhang D (2016) Mechanical and electronic properties of P42/mnm silicon carbides. Z Naturforsch A 71:387–396. doi:10.1515/zna-2015-0539

    Google Scholar 

  30. Chen X-Q, Niu H, Li D, Li Y (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–1281. doi:10.1016/j.intermet.2011.03.026

    Article  Google Scholar 

  31. Pugh S (2009) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dublin Philos Mag J Sci 45:823–843. doi:10.1080/14786440808520496

    Article  Google Scholar 

  32. Fan Q, Wei Q, Chai C, Yan H, Zhang M, Lin Z, Zhang Z, Zhang J, Zhang D (2015) Structural, mechanical, and electronic properties of P3m1-BCN. J Phys Chem Solids 79:89–96. doi:10.1016/j.jpcs.2014.12.008

    Article  Google Scholar 

  33. Li Z, Gao F, Xu Z (2012) Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: first-principles calculations. Phys Rev B 85:144115. doi:10.1103/PhysRevB.85.144115

    Article  Google Scholar 

  34. Wei Q, Zhang M, Yan H, Lin Z, Zhu X (2014) Structural, electronic and mechanical properties of Imma-carbon. EPL 107:27007. doi:10.1209/0295-5075/107/27007

    Article  Google Scholar 

  35. Li K, Yang P, Xue D (2012) Anisotropic hardness prediction of crystalline hard materials from the electronegativity. Acta Mater 60:35–42. doi:10.1016/j.actamat.2011.09.011

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 11204007), Natural Science Basic Research plan in Shaanxi Province of China (Grant Nos. 2016JM1026, 20161016), and Education Committee Natural Science Foundation in Shaanxi Province of China (Grant No. 16JK1049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Wei or Meiguang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Zhang, Q., Yan, H. et al. A new superhard carbon allotrope: tetragonal C64 . J Mater Sci 52, 2385–2391 (2017). https://doi.org/10.1007/s10853-016-0564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0564-6

Keywords

Navigation