Skip to main content
Log in

Core–shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Core–shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) composite materials were prepared by carbonization of HCNF@polyaniline. The HCNF@NPC composite materials are applied to the anode for sodium-ion batteries, showing a superior reversible discharge capacity of 182 mAh g−1 after 200 cycles at 50 mA g−1. Moreover, excellent long-term cycling stability (>2500 cycles) is also obtained even at 500 mA g−1. The results indicate that the HCNF@NPC composite electrode shows outstanding electrochemical performance. The excellent performance of HCNF@NPC composite electrode may attribute to the synergetic effect between HCNF core and NPC shell layer, and the HCNF core can provide a firm hollow carbon matrix to stabilize the electrode structure, and the NPC shell layer can improve the capacity effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  Google Scholar 

  2. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184

    Article  Google Scholar 

  3. Whittingham M (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302

    Article  Google Scholar 

  4. Slater M, Kim D, Lee E, Johnson C (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Article  Google Scholar 

  5. Kim S, Seo D, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721

    Article  Google Scholar 

  6. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517

    Article  Google Scholar 

  7. Stevens D, Dahn J (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811

    Article  Google Scholar 

  8. Wang L, Lu Y, Liu J, Xu M, Cheng J (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem 52(7):1964–1967

    Article  Google Scholar 

  9. Luo W, Schardt J, Bommier C, Wang B, Razink J (2013) Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A 1:10662–10666

    Article  Google Scholar 

  10. Ponrouch A, Goñi A, Palacín M (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88

    Article  Google Scholar 

  11. Ding J, Wang H, Li Z, Kohandehghan A, Cui K (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015

    Article  Google Scholar 

  12. Li W, Zeng L, Yang Z, Gu L, Wang J (2014) Free-standing and binder free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6:693–698

    Article  Google Scholar 

  13. Song H, Li N, Cui H, Wang C (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy 4:81–87

    Article  Google Scholar 

  14. Wen Y, He K, Zhu Y, Han F, Xu Y (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033. doi:10.1038/ncomms5033

    Article  Google Scholar 

  15. Luo X, Yang C, Peng Y, Pu N, Ger M (2015) Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J Mater Chem A 3:10320–10326

    Article  Google Scholar 

  16. Wang Z, Qie L, Yuan L, Zhang W, Hu X (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334

    Article  Google Scholar 

  17. Wang H, Wu Z, Meng F, Ma D, Huang X (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6(1):56–60

    Article  Google Scholar 

  18. Shin W, Jeong H, Kim B, Kang J, Choi J (2012) Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett 12(5):2283–2288

    Article  Google Scholar 

  19. Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4(5):1592–1605

    Article  Google Scholar 

  20. Li Z, Xu Z, Tan X, Wang H, Holt C (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6(3):871–878

    Article  Google Scholar 

  21. Fu L, Tang K, Song K, Aken P, Yu Y (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6(3):1384–1389

    Article  Google Scholar 

  22. Li Q, Zhang Z, Guo Z, Lai Y, Zhang K (2014) Improved cyclability of lithium-sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core-shell composite. Carbon 78:1–9

    Article  Google Scholar 

  23. Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y, Huang H (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283

    Article  Google Scholar 

  24. Chen Y, Li X, Zhou X, Yao H, Huang H, Mai Y, Zhou L (2014) Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials. Energy Environ Sci 7:2689–2696

    Article  Google Scholar 

  25. Zhou X, Tang J, Yang J, Xie J, Huang B (2013) Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J Mater Chem A 1:5037–5044

    Article  Google Scholar 

  26. Qie L, Chen W, Wang Z, Shao Q, Li X (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a super-high capacity and rate capability. Adv Mater 24:2047–2050

    Article  Google Scholar 

  27. Li L, Manthiram A (2014) O- and N- doped carbon nanowebs as metal-free catalysts for hybrid Li-air batteries. Adv Energy Mater. doi:10.1002/aenm.201301795

    Google Scholar 

  28. Wang D, Li F, Yin L, Lu X, Chen Z (2012) Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem Eur J 18(17):5345–5351

    Article  Google Scholar 

  29. Xu J, Wang M, Wickramaratne N, Jaroniec M, Dou S (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048

    Article  Google Scholar 

  30. Matsumura Y, Wang S, Mondori J (1995) Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J Electrochem Soc 142(9):2914–2918

    Article  Google Scholar 

  31. Thomas P, Billaud D (2002) Electrochemical insertion of sodium into hard carbons. Electrochim Acta 47(20):3303–3307

    Article  Google Scholar 

  32. Tang K, Fu L, White R, Yu L, Titirici M (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877

    Article  Google Scholar 

  33. Zhang K, Li X, Liang J, Zhu Y, Hu L (2015) Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim Acta 155:174–182

    Article  Google Scholar 

  34. Cao Y, Xiao L, Sushko M, Wang W, Schwenzer B (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  Google Scholar 

  35. Gavrilov N, Pasti I, Vujkovic M, Travas-Sejdic J (2012) High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon 50:3915–3927

    Article  Google Scholar 

  36. Hou H, Banks C, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Teacher Research Fund of Central South University (2013JSJJ027). This study was supported by grants from the Project of Innovation-driven Plan in Central South University (2015CXS018, 2015CX001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohui Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Deng, Y., Li, Q. et al. Core–shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries. J Mater Sci 52, 2356–2365 (2017). https://doi.org/10.1007/s10853-016-0528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0528-x

Keywords

Navigation