Skip to main content
Log in

First-principles study on the effect and magnetism of iron segregation in Cu grain boundary

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The atomic configurations and electronic structures of iron on CuΣ5 symmetrical tilt grain boundary (GB) have been studied based on the density functional theory. Different segregation positions of iron are considered. A weak tendency of iron segregating to GB is arrived due to the segregation energy. In addition, iron segregation shows a cohesion strengthening effect of Cu GB according to Rice–Wang model, which is mainly contributed by the charge redistribution. Finally, an enhancement of the local magnetic moment of iron in Cu GB or bulk or surface is explored due to larger atomic volume than the FCC iron crystal and the Cu atoms surrounding iron are slightly polarized by the doped iron. This study can enrich the understanding of the effects of iron on the cohesion of Cu–Fe alloy and also might supply an indirect guidance to expand the application of Cu–Fe alloy in electronic device manufacture field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Braspenning PJ, Zeller R, Lodder A, Dederichs PH (1984) Self-consistent cluster calculations with correct embedding for 3 d, 4 d, and some sp impurities in copper. Phys Rev B 29:703–718

    Article  Google Scholar 

  2. Razee SSA, Prasad R, Singru RM (1997) The electronic structure, and magnetic and structural properties of Fe–Cu and Fe–Ag alloys. J Phys: Condens Matter 9:94455–94466

    Google Scholar 

  3. Wang JT, Zhou L, Kawazoe Y, Wang DS (1999) Ab initio studies on the structural and magnetic properties of FeCu superlattices. Phys Rev B 60:3025–3028

    Article  Google Scholar 

  4. James P, Eriksson O, Johansson B, Abrikosov IA (1999) Calculated magnetic properties of binary alloys between Fe Co, Ni, and Cu. Phys Rev B 59:419–430

    Article  Google Scholar 

  5. Monzen R, Kita K (2002) Ostwald ripening of spherical Fe particles in Cu–Fe alloys. Phil Mag Lett 82:373–382

    Article  Google Scholar 

  6. Wada N, Takamatsu K, Takeda M, Takeguchi M, Blanchin MG (2010) The microstructure and magnetic properties of nano-scale Fe magnetic particles precipitated in a Cu–Fe alloy. Int J Mat Res 101:361–365

    Article  Google Scholar 

  7. Bao G, Chen Y, Ma J, Fang Y, Meng L, Zhao S, Wang X, Liu J (2015) Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys. J Zhejiang Univ-Sci A 16:622–629

    Article  Google Scholar 

  8. Biselli C, Morris DG (1994) Microstructure and strength of Cu–Fe in situ composites obtained from prealloyed Cu–Fe powder. Acta metal Mater 42:163–176

    Article  Google Scholar 

  9. Biselli C, Morris DG (1996) Microstructure and strength of Cu Fe in Situ composites after very high drawing strains. Acta Mater 44:493–504

    Article  Google Scholar 

  10. Rawson A, Kisi E, Sugo H, Fiedler T (2014) Effective conductivity of Cu–Fe and Sn–Al miscibility gap alloys. Int J Heat Mass Transfer 77:395–405

    Article  Google Scholar 

  11. Zhang S, Kontsevoi OY, Freeman AJ, Olson GB (2011) First principles investigation of zinc-induced embrittlement in an aluminum grain boundary. Acta Mater 59:6155–6167

    Article  Google Scholar 

  12. Liu W, Han H, Ren C, Yin H, Zhou Y, Huai P, Xu H (2015) Effects of rare-earth on the cohesion of Ni Σ5 (012) grain boundary from first-principles calculations. Comput Mater Sci 96:374–378

    Article  Google Scholar 

  13. Kart HH, Uludogan M, Cagin T (2009) DFT studies of sulfur induced stress corrosion cracking in nickel. Comput Mater Sci 44:1236–1242

    Article  Google Scholar 

  14. Yamaguchi M, Shiga M, Kaburaki H (2005) Grain boundary decohesion by impurity segregation in a nickel-sulfur system. Science 307:393–397

    Article  Google Scholar 

  15. Lu GH, Zhang Y, Deng S, Wang T, Kohyama M, Yamamoto R, Liu F, Horikawa K (2006) Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: grain boundary weakening. Phys Rev B 73:224115

    Article  Google Scholar 

  16. Yuasa M, Mabuchi M (2010) Effects of segregated Cu on an Fe grain boundary by first-principles tensile tests. J Phys: Condens Matter 22:505705

    Google Scholar 

  17. Yuasa M, Mabuchi M (2013) First-principles study in Fe grain boundary with Al segregation: variation in electronic structures with straining. Phil Mag 93:635–647

    Article  Google Scholar 

  18. Rice JR, Wang JS (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng, A 107:23–40

    Article  Google Scholar 

  19. Wu R, Freeman AJ, Olson GB (1994) First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science 265:376–380

    Article  Google Scholar 

  20. Geng WT, Freeman AJ, Olson GB (2001) Influence of alloying additions on grain boundary cohesion of transition metals: first-principles determination and its phenomenological extension. Phys Rev B 63:165415

    Article  Google Scholar 

  21. Lejček P, Šob M (2014) An analysis of segregation-induced changes in grain boundary cohesion in bcc iron. J Mater Sci 49:2477–2482. doi:10.1007/s10853-013-7943-z

    Article  Google Scholar 

  22. Tian ZX, Yan XJ, Xiao W, Geng WT (2009) Effect of lateral contraction and magnetism on the energy release upon fracture in metals: first-principles computational tensile tests. Phys Rev B 79:144114

    Article  Google Scholar 

  23. Liang S, Hao C, Shi Y (2015) The power of single atom catalysis. ChemCatChem 7:2559–2567

    Article  Google Scholar 

  24. Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dond X, Pennycook SJ, Chisholm MF (2013) Catalytically active single-atom niobium in graphitic layers. Nat Commun 4:1924

    Article  Google Scholar 

  25. Kronberg ML, Wilson FH (1949) Secondary recrystallization in copper. AIME Trans 185:501–514

    Google Scholar 

  26. Duscher G, Chisholm MF, Alber U (2004) Bismuth-induced embrittlement of copper grain boundaries. Nat Mater 3:621–626

    Article  Google Scholar 

  27. Lozovoi AY, Paxton AT (2008) Boron in copper: a perfect misfit in the bulk and cohesion enhancer at a grain boundary. Phys Rev B 77:165413

    Article  Google Scholar 

  28. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  Google Scholar 

  29. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  30. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  32. Rycroft CH, Grest GS, Landry JW, Bazant MZ (2006) Analysis of granular flow in a pebble-bed nuclear reactor. Phys Rev E 74:021306

    Article  Google Scholar 

  33. Liu W, Ren C, Han H, Tan J, Zou Y, Zhou X, Huai P, Xu H (2014) First-principles study of the effect of phosphorus on nickel grain boundary. J Appl Phys 115:043706

    Article  Google Scholar 

  34. Zhang S, Kontsevoi OY, Freeman AJ, Olson GB (2010) Sodium-induced embrittlement of an aluminum grain boundary. Phys Rev B 82:224107

    Article  Google Scholar 

  35. Všianská M, Šob M (2011) The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog Mater Sci 56:817–840

    Article  Google Scholar 

  36. Geng WT, Freeman AJ, Wu R, Geller CB, Raynolds JE (1999) Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a Σ5 nickel grain boundary. Phys Rev B 60:7149–7155

    Article  Google Scholar 

  37. Eberhart ME, Clougherty DP, MacLaren JM (1993) A theoretical investigation of the mechanisms of fracture in metals and alloys. J Am Chem Soc 115:5762–5767

    Article  Google Scholar 

  38. Geng WT, Freeman AJ, Wu RQ (2001) Magnetism at high-index transition-metal surfaces and the effect of metalloid impurities: Ni(210). Phys Rev B 63:064427

    Article  Google Scholar 

  39. Čák M, Šob M, Hafner J (2008) First-principles study of magnetism at grain boundaries in iron and nickel. Phys Rev B 78:054418

    Article  Google Scholar 

  40. Všianská M, Šob M (2011) Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel. Phys Rev B 84:014418

    Article  Google Scholar 

  41. Rahman G, Kim IG, Bhadeshia HKDH, Freeman AJ (2010) First-principles investigation of magnetism and electronic structures of substitutional 3d transition-metal impurities in bcc Fe. Phys Rev B 81:184423

    Article  Google Scholar 

  42. Wachowicz E, Ossowski T, Kiejna A (2010) Cohesive and magnetic properties of grain boundaries in bcc Fe with Cr additions. Phys Rev B 81:094104

    Article  Google Scholar 

  43. Zhang L, Šob M, Wu Z, Zhang Y, Lu GH (2014) Characterization of iron ferromagnetism by the local atomic volume: from three-dimensional structures to isolated atoms. J Phys: Condens Matter 26:086002

    Google Scholar 

  44. Wu R, Freeman AJ, Olson GB (1992) On the electronic basis of the phosphorus intergranular embrittlement of iron. J Mater Res 7:2403–2411

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Researching Program of China (Grant No. 2011CB606403), the Fundamental Research Funds for the Central Universities of China (Grant No. N140108001) and Project of Education Department of Liaoning Province (Grant No. JL201615409). Computation time was provided by Shenyang Supercomputer Center at Institute of Metals Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Lu, X., Liu, Y. et al. First-principles study on the effect and magnetism of iron segregation in Cu grain boundary. J Mater Sci 52, 4309–4322 (2017). https://doi.org/10.1007/s10853-016-0526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0526-z

Keywords

Navigation