Skip to main content
Log in

Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in aqueous phase

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The working mechanism of carbon nanotube (CNT) dispersion by distinct methacrylate ester-based polycarboxylates (PCEs), all of which are highly efficient cement dispersants, was elucidated. Such duplex functionality of the PCE saves introducing an extra surfactant, which might cause severe adverse reactions in cement-based matrices. Eight PCEs exhibiting well-defined architectures were synthesized, characterized by gel permeation chromatography, and their influence on the dispersion capability of CNTs was assessed. The PCEs varied systematically with respect to their backbone length, grafting density, and side-chain length. Using optical microscopy, it was found that at a mass ratio of CNT:PCE = 1:1, pronounced differences manifested themselves in the state of the macro-dispersions, depending on the PCE architecture. However, a clear correlation between PCE structure and dispersing efficiency could not be established. A subsequent study applying equivalent numbers of PCE molecules revealed clear differences in the individual PCEs’ dispersibilities. The most efficient PCEs consisted of a long backbone combined with a high side-chain density. Lower side-chain densities as well as short backbones resulted in pronounced reduction in CNT-dispersing ability. Regarding side-chain length, no significant effect was found. Finally, a model for the dispersing mechanism leading to deagglomeration of the CNTs was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Krüger A (2010) Carbon nanotubes. In: Carbon materials and nanotechnology. Wiley, Weinheim, pp 123–281

  2. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  3. Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater 2013:80

    Article  Google Scholar 

  4. Han B, Sun S, Ding S et al (2015) Review of nanocarbon-engineered multifunctional cementitious composites. Compos A Appl Sci Manuf 70:69–81. doi:10.1016/j.compositesa.2014.12.002

    Article  Google Scholar 

  5. Chuah S, Pan Z, Sanjayan JG et al (2014) Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr Build Mater 73:113–124. doi:10.1016/j.conbuildmat.2014.09.040

    Article  Google Scholar 

  6. Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) Dispersion of carbon nanotubes in liquids. J Dispers Sci Technol 24:1–41. doi:10.1081/DIS-120017941

    Article  Google Scholar 

  7. Dresel A, Teipel U (2016) Influence of the wetting behavior and surface energy on the dispersibility of multi-wall carbon nanotubes. Colloids Surf A 489:57–66. doi:10.1016/j.colsurfa.2015.10.027

    Article  Google Scholar 

  8. Kharissova OV, Kharisov BI, Ortiz EGD (2013) Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv 3:24812–24852. doi:10.1039/C3ra43852j

    Article  Google Scholar 

  9. Al-Hamadani YAJ, Chu KH, Son A et al (2015) Stabilization and dispersion of carbon nanomaterials in aqueous solutions: a review. Sep Purif Technol 156:861–874. doi:10.1016/j.seppur.2015.11.002

    Article  Google Scholar 

  10. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46

    Article  Google Scholar 

  11. Sobolkina A, Mechtcherine V, Khavrus V et al (2012) Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem Concr Compos 34:1104–1113. doi:10.1016/j.cemconcomp.2012.07.008

    Article  Google Scholar 

  12. Premkumar T, Mezzenga R, Geckeler KE (2012) Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small 8:1299–1313. doi:10.1002/smll.201101786

    Article  Google Scholar 

  13. Mohamed A, Anas AK, Bakar SA et al (2015) Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. J Colloid Interface Sci 455:179–187. doi:10.1016/j.jcis.2015.05.054

    Article  Google Scholar 

  14. Di Crescenzo A, Di Profio P, Siani G et al (2016) Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates. Langmuir. doi:10.1021/acs.langmuir.6b01435

    Google Scholar 

  15. Liebscher M, Gärtner T, Tzounis L et al (2014) Influence of the MWCNT surface functionalization on the thermoelectric properties of melt-mixed polycarbonate composites. Compos Sci Technol 101:133–138. doi:10.1016/j.compscitech.2014.07.009

    Article  Google Scholar 

  16. Osorio AG, Silveira ICL, Bueno VL, Bergmann CP (2008) H2SO4/HNO3/HCl—functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl Surf Sci 255:2485–2489. doi:10.1016/j.apsusc.2008.07.144

    Article  Google Scholar 

  17. Sobolkina A, Mechtcherine V, Bellmann C et al (2014) Surface properties of CNTs and their interaction with silica. J Colloid Interface Sci 413:43–53. doi:10.1016/j.jcis.2013.09.033

    Article  Google Scholar 

  18. Fuge R, Liebscher M, Schröfl C et al (2016) Fragmentation characteristics of undoped and nitrogen-doped multiwalled carbon nanotubes in aqueous dispersion in dependence on the ultrasonication parameters. Diam Relat Mater 66:126–134. doi:10.1016/j.diamond.2016.03.026

    Article  Google Scholar 

  19. Plank J, Sakai E, Miao CW et al (2015) Chemical admixtures—chemistry, applications and their impact on concrete microstructure and durability. Cem Concr Res A 78:81–99. doi:10.1016/j.cemconres.2015.05.016

    Article  Google Scholar 

  20. Stephens C, Brown L, Sanchez F (2016) Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response. Carbon. doi:10.1016/j.carbon.2016.05.076

  21. Gay C, Raphaël E (2001) Comb-like polymers inside nanoscale pores. Adv Colloid Interface Sci 94:229–236. doi:10.1016/S0001-8686(01)00062-8

    Article  Google Scholar 

  22. Monosi S, Troli R, Coppola L, Collepardi M (1996) Water reducers for the high alumina cement-silica fume system. Mater Struct 29:639–644. doi:10.1007/BF02485972

    Article  Google Scholar 

  23. Uchikawa H, Hanehara S, Sawaki D (1997) The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture. Cem Concr Res 27:37–50. doi:10.1016/S0008-8846(96)00207-4

    Article  Google Scholar 

  24. Yamada K, Takahashi T, Hanehara S, Matsuhisa M (2000) Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem Concr Res 30:197–207. doi:10.1016/S0008-8846(99)00230-6

    Article  Google Scholar 

  25. Yamada K, Ogawa S, Hanehara S (2001) Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase. Cem Concr Res 31:375–383. doi:10.1016/S0008-8846(00)00503-2

    Article  Google Scholar 

  26. Sakai E, Yamada K, Ohta A (2003) Molecular structure and dispersion-adsorption mechanisms of comb-type superplasticizers used in Japan. J Adv Concr Technol 1:16–25. doi:10.3151/jact.1.16

    Article  Google Scholar 

  27. Puertas F, Santos H, Palacios M, Martínez-Ramírez S (2005) Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Adv Cem Res 17:77–89

    Article  Google Scholar 

  28. Sakai E, Ishida A, Ohta A (2006) New trends in the development of chemical admixtures in Japan. J Adv Concr Technol 4:211–223. doi:10.3151/jact.4.211

    Article  Google Scholar 

  29. Plank J, Chatziagorastou P, Hirsch C (2007) New model describing distribution of adsorbed superplasticizer on the surface of hydrating cement grain. Jianzhu Cailiao Xuebao (J Build Mater) 10:7–13

    Google Scholar 

  30. Schröfl C, Gruber M, Plank J (2012) Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC). Cem Concr Res 42:1401–1408. doi:10.1016/j.cemconres.2012.08.013

    Article  Google Scholar 

  31. Alonso MM, Palacios M, Puertas F (2013) Compatibility between polycarboxylate-based admixtures and blended-cement pastes. Cem Concr Compos 35:151–162. doi:10.1016/j.cemconcomp.2012.08.020

    Article  Google Scholar 

  32. Habbaba A, Lange A, Plank J (2013) Synthesis and performance of a modified polycarboxylate dispersant for concrete possessing enhanced cement compatibility. J Appl Polym Sci 129:346–353. doi:10.1002/app.38742

    Article  Google Scholar 

  33. Marchon D, Sulser U, Eberhardt A, Flatt RJ (2013) Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete. Soft Matter 9:10719–10728. doi:10.1039/C3SM51030A

    Article  Google Scholar 

  34. Kong F, Pan L, Wang C et al (2016) Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste. Constr Build Mater 105:545–553. doi:10.1016/j.conbuildmat.2015.12.178

    Article  Google Scholar 

  35. Lange A, Plank J (2015) Optimization of comb-shaped polycarboxylate cement dispersants to achieve fast-flowing mortar and concrete. J Appl Polym Sci. doi:10.1002/app.42529

    Google Scholar 

  36. Lange A, Hirata T, Plank J (2014) Influence of the HLB value of polycarboxylate superplasticizers on the flow behavior of mortar and concrete. Cem Concr Res 60:45–50. doi:10.1016/j.cemconres.2014.02.011

    Article  Google Scholar 

  37. Collins F, Lambert J, Duan WH (2012) The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem Concr Compos 34:201–207. doi:10.1016/j.cemconcomp.2011.09.013

    Article  Google Scholar 

  38. Zou B, Chen SJ, Korayem AH et al (2015) Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 85:212–220. doi:10.1016/j.carbon.2014.12.094

    Article  Google Scholar 

  39. Kondofersky-Mintova I, Plank J (2012) Fundamental Interactions between multi-walled carbon nanotubes (MWCNT), Ca2+ and polycarboxylate superplasticizers in cementitious systems. In: Malhotra VM (ed) 10th international conference on superplasticizers and other chemical admixtures in concrete, SP-288-29. Farmington Hills (MI/USA), pp 423–434

  40. Mendoza O, Sierra G, Tobón JI (2013) Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications. Constr Build Mater 47:771–778. doi:10.1016/j.conbuildmat.2013.05.100

    Article  Google Scholar 

  41. Chen SJ, Wang W, Sagoe-Crentsil K et al (2016) Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective. RSC Adv 6:5745–5753. doi:10.1039/C5RA13511G

    Article  Google Scholar 

  42. Khater HM, Abd el Gawaad HA (2016) Characterization of alkali activated geopolymer mortar doped with MWCNT 102. Constr Build Mater 102:329–337. doi:10.1016/j.conbuildmat.2015.10.121

    Article  Google Scholar 

  43. Shah SP, Konsta-Gdoutos MS, Metaxa ZS (2011) Advanced cement based nanocomposites. In: Kounadis A, Gdoutos E (eds) Recent advances in mechanics. Springer, Netherlands, pp 313–327

    Chapter  Google Scholar 

  44. Han B, Zhang K, Yu X et al (2011) Fabrication of piezoresistive CNT/CNF cementitious composites with superplasticizer as dispersant. J Mater Civ Eng 24:658–665

    Article  Google Scholar 

  45. Al-Dahawi A, Öztürk O, Emami F et al (2016) Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Constr Build Mater 104:160–168. doi:10.1016/j.conbuildmat.2015.12.072

    Article  Google Scholar 

  46. Wille K, Loh K (2010) Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes. Transp Res Record 2142:119–126. doi:10.3141/2142-18

    Article  Google Scholar 

  47. Amin MS, El-Gamal SMA, Hashem FS (2015) Fire resistance and mechanical properties of carbon nanotubes—clay bricks wastes (Homra) composites cement. Constr Build Mater 98:237–249. doi:10.1016/j.conbuildmat.2015.08.074

    Article  Google Scholar 

  48. Konsta-Gdoutos MS, Aza CA (2014) Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem Concr Compos 53:162–169. doi:10.1016/j.cemconcomp.2014.07.003

    Article  Google Scholar 

  49. Correia AAS, Casaleiro PDF, Rasteiro MGBV (2015) Applying multiwall carbon nanotubes for soil stabilization. Procedia Eng 102:1766–1775. doi:10.1016/j.proeng.2015.01.313

    Article  Google Scholar 

  50. Yazdanbakhsh A, Grasley Z, Tyson B, Abu Al-Rub RK (2010) Distribution of carbon nanofibers and nanotubes in cementitious composites. Transp Res Record 2142:89–95

    Article  Google Scholar 

  51. Fakhim B, Hassani A, Rashidi A, Ghodousi P (2015) Preparation and microstructural properties study on cement composites reinforced with multi-walled carbon nanotubes. J Compos Mater 49:85–98. doi:10.1177/0021998313514873

    Article  Google Scholar 

  52. Manzur T, Yazdani N (2014) Optimum mix ratio for carbon nanotubes in cement mortar. KSCE J Civ Eng 19:1405–1412. doi:10.1007/s12205-014-0721-x

    Article  Google Scholar 

  53. Yazdanbakhsh A, Grasley ZC, Tyson B, Al-Rub RKA (2009) Carbon nano filaments in cementitious materials: some issues on dispersion and interfacial bond. Special Publ 267:21–34

    Google Scholar 

  54. Manzur T, Yazdani N, Emon MAB (2016) Potential of carbon nanotube reinforced cement composites as concrete repair material. J Nanomater 2016:e1421959. doi:10.1155/2016/1421959

    Article  Google Scholar 

  55. Jang S-H, Kawashima S, Yin H (2016) Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9:220. doi:10.3390/ma9040220

    Article  Google Scholar 

  56. Blandine F, Habermehi-Cwirzen K, Cwirzen A (2016) Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste. Front Struct Civ Eng 1–12. doi:10.1007/s11709-016-0331-4

  57. Tyson BM, Abu Al-Rub RK, Yazdanbakhsh A, Grasley Z (2011) Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J Mater Civ Eng 23:1028–1035

    Article  Google Scholar 

  58. Abu Al-Rub RK, Tyson BM, Yazdanbakhsh A, Grasley Z (2012) Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers. J Nanomech Micromech 2:1–6. doi:10.1061/(ASCE)NM.2153-5477.0000041

    Article  Google Scholar 

  59. Yazdanbakhsh A, Chu C (2015) The effect of carbon nanofibers on the strength of concrete with natural and recycled aggregates. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer, New York, pp 277–283

  60. Lestari Y, Bahri S, Sugiarti E, et al (2013) Effect of different dispersants in compressive strength of carbon fiber cementitious composites. In: AIP Conference Proceedings. AIP Publishing, Melville, pp 67–69

  61. Gay C, Sanchez F (2010) Performance of carbon nanofiber-cement composites with a high-range water reducer. Transp Res Record 2142:109–113

    Article  Google Scholar 

  62. Du H, Pang SD (2015) Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem Concr Res 76:10–19. doi:10.1016/j.cemconres.2015.05.007

    Article  Google Scholar 

  63. Wotring E, Mondal P, Marsh C (2015) Characterizing the dispersion of graphene nanoplatelets in water with water reducing admixture. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer, New York, pp 141–148

  64. Metaxa ZS (2015) Polycarboxylate based superplasticizers as dispersant agents for xGnPs reinforcing cement based materials. J Eng Sci Technol Rev 8:1–5

    Google Scholar 

  65. Du H, Gao HJ, Pang SD (2016) Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cem Concr Res 83:114–123. doi:10.1016/j.cemconres.2016.02.005

    Article  Google Scholar 

  66. Zhao L, Guo X, Ge C et al (2016) Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Constr Build Mater 113:470–478. doi:10.1016/j.conbuildmat.2016.03.090

    Article  Google Scholar 

  67. Sharma S, Kothiyal NC (2015) Synergistic effect of zero-dimensional spherical carbon nanoparticles and one-dimensional carbon nanotubes on properties of cement-based ceramic matrix: microstructural perspectives and crystallization investigations. Compos Interfaces 22:899–921. doi:10.1080/09276440.2015.1076281

    Article  Google Scholar 

  68. Laguna MTR, Medrano R, Plana MP, Tarazona MP (2001) Polymer characterization by size-exclusion chromatography with multiple detection. J Chromatogr A 919:13–19. doi:10.1016/S0021-9673(01)00802-0

    Article  Google Scholar 

  69. Wieneke B (2010) Neue Ansätze zum Verständnis des Wirkmechanismus von Schwindreduzierern in zementären Systemen. Verlag Dr, Hut

    Google Scholar 

  70. Ishimuro PDY, Ueberreiter PDK (1980) The surface tension of poly(acrylic acid) in aqueous solution. Colloid Polym Sci 258:928–931. doi:10.1007/BF01584922

    Article  Google Scholar 

  71. Winterhalter M, Bürner H, Marzinka S et al (1995) Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential. Biophys J 69:1372–1381

    Article  Google Scholar 

  72. Nakanishi K, Matsumoto T, Hayatsu M (1971) Surface tension of aqueous solutions of some glycols. J Chem Eng Data 16:44–45. doi:10.1021/je60048a010

    Article  Google Scholar 

  73. Wang P, Kosinski JJ, Anderko A et al (2013) Ethylene glycol and its mixtures with water and electrolytes: thermodynamic and transport properties. Ind Eng Chem Res 52:15968–15987. doi:10.1021/ie4019353

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) for its funding of the Projects ME 2938/15-1 and LE 863/19-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Liebscher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebscher, M., Lange, A., Schröfl, C. et al. Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in aqueous phase. J Mater Sci 52, 2296–2307 (2017). https://doi.org/10.1007/s10853-016-0522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0522-3

Keywords

Navigation