Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of Li0.33La0.567TiO3

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanical properties of conventional sintered Li0.33La0.567TiO3 (LLTO) are presented with focus on the correlation with the microstructural appearance. Variation in density, grain size, and second phase are achieved by changing the lithium to lanthanum ratio and sintering conditions. All samples show varying amounts of a second phase which is identified as TiO2. These inert particles have no effect on the measured mechanical properties. In contrast, a high sensitivity to changes in the microstructural evolution is found. Therefore, density and grain size are the important microstructural features to control both electrical and mechanical properties. For stoichiometric, a dense LLTO a Young’s modulus of 200 GPa, K IC of 1.2 MPam0.5, and a Vickers hardness of 8.4 GPa are measured. For all dense samples, the characteristic bending strength shows values around 150 MPa and Weibull modulus of m = 7–9. Deviations from these results are explained by microstructural events like second phases, density, or grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990. doi:10.1021/cm0300516

    Article  Google Scholar 

  2. Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12:81–92. doi:10.1007/s11581-006-0013-7

    Article  Google Scholar 

  3. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ion 180:911–916. doi:10.1016/j.ssi.2009.03.022

    Article  Google Scholar 

  4. Inaguma Y, Liquan C, Itoh M et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693. doi:10.1016/0038-1098(93)90841-A

    Article  Google Scholar 

  5. Inaguma Y, Chen L, Itoh M, Nakamura T (1994) Candidate compounds with perovskite structure for high lithium ionic conductivity. Solid State Ion 70–71:196–202. doi:10.1016/0167-2738(94)90309-3

    Article  Google Scholar 

  6. Inaguma Y, Yu J, Katsumata T, Itoh M (1997) Lithium ion conductivity in a perovskite lanthanum lithium titanate single crystal. J Ceram Soc Jpn 105:548–550. doi:10.2109/jcersj.105.548

    Article  Google Scholar 

  7. Kawai H, Kuwano J (1994) Lithium ion conductivity of A-site deficient perovskite solid solution La0.67−x Li3x TiO3. J Electrochem Soc 141:L78–L79. doi:10.1149/1.2055043

    Article  Google Scholar 

  8. Ban CW, Choi GM (2001) The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ion 140:285–292. doi:10.1016/S0167-2738(01)00821-9

    Article  Google Scholar 

  9. Aguesse F, Roddatis V, Roqueta J et al (2015) Microstructure and ionic conductivity of LLTO thin films: influence of different substrates and excess lithium in the target. Solid State Ion 272:1–8. doi:10.1016/j.ssi.2014.12.005

    Article  Google Scholar 

  10. Munz D, Fett T (1999) Ceramics: mechanical properties, failure behaviour, materials selection, vol 2nd print. Springer, Berlin

    Book  Google Scholar 

  11. Chiang Y, Birnie DP, Kingery WD (1997) Physical ceramics. Wiley, New York

    Google Scholar 

  12. Cho Y-H, Wolfenstine J, Rangasamy E et al (2012) Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3. J Mater Sci 47:5970–5977. doi:10.1007/s10853-012-6500-5

    Article  Google Scholar 

  13. Hupfer T, Bucharsky EC, Schell KG et al (2016) Evolution of microstructure and its relation to ionic conductivity. Solid State Ion 288:235–239. doi:10.1016/j.ssi.2016.01.036

    Article  Google Scholar 

  14. Christensen J, Newman J (2006) Stress generation and fracture in lithium insertion materials. J Solid State Electrochem 10:293–319. doi:10.1007/s10008-006-0095-1

    Article  Google Scholar 

  15. Rohmer J (2015) Herstellung und mechanische Charakterisierung von Lithium–Lanthan–Titanat. Karlsruhe Institute of Technology, Karlsruhe

    Google Scholar 

  16. DIN EN 843-2:2007-03 (2007) Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature - Part 2: Determination of Young’s modulus, shear modulus; German version EN 843-2:2006 and Poisson’s ratio

  17. DIN EN 843-1:2008-08 (2008) Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature - Part 1: Determination of flexural strength; German version EN 843-1:2006

  18. DIN CEN/TS 14425-5:2004-10 (2004) Advanced technical ceramics - Test methods for determination of fracture toughness of monolitic ceramics - Part 5: Single-edge vee-notch beam (SEVNB) method; German version CEN/TS 14425-5:2004

  19. Coble RL, Kingery WD (1956) Effect of porosity on physical properties of sintered alumina. J Am Ceram Soc 39:377–385. doi:10.1111/j.1151-2916.1956.tb15608.x

    Article  Google Scholar 

  20. Dean EA, Lopez JA (1983) Empirical dependence of elastic moduli on porosity for ceramic materials. J Am Ceram Soc 66:366–370. doi:10.1111/j.1151-2916.1983.tb10051.x

    Article  Google Scholar 

  21. Fredel MC, Boccaccini AR (1996) Processing and mechanical properties of biocompatible Al2O3 platelet-reinforced TiO2. J Mater Sci 31:4375–4380. doi:10.1007/BF00356463

    Article  Google Scholar 

  22. Höfler HJ, Averback RS (1990) Grain growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture toughness. Scr Metall Mater 24:2401–2406. doi:10.1016/0956-716X(90)90101-L

    Article  Google Scholar 

  23. Kim HS, Bush MB (1999) The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct Mater 11:361–367. doi:10.1016/S0965-9773(99)00052-5

    Article  Google Scholar 

  24. Chaim R, Hefetz M (2004) Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2–3 wt% Y2O3 ceramic. J Mater Sci 39:3057–3061. doi:10.1023/B:JMSC.0000025832.93840.b0

    Article  Google Scholar 

  25. Hall EO (1954) Variation of hardness of metals with grain size. Nature 173:948–949. doi:10.1038/173948b0

    Article  Google Scholar 

  26. Krell A, Blank P (1995) Grain size dependence of hardness in dense submicrometer alumina. J Am Ceram Soc 78:1118–1120. doi:10.1111/j.1151-2916.1995.tb08452.x

    Article  Google Scholar 

  27. Rice RW, Wu CC, Borchelt F (1994) Hardness-grain-size relations in ceramics. J Am Ceram Soc 77:2539–2553. doi:10.1111/j.1151-2916.1994.tb04641.x

    Article  Google Scholar 

  28. Mayo MJ, Siegel RW, Narayanasamy A, Nix WD (1990) Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res 5:1073–1082. doi:10.1557/JMR.1990.1073

    Article  Google Scholar 

  29. Cooper C, Sutorik AC, Wright J et al (2014) Mechanical properties of hot isostatically pressed Li0.35 La0.55 TiO3. Adv Eng Mater 16:755–759. doi:10.1002/adem.201400071

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Jakob Rohmer for his assistance in processing and characterization of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl G. Schell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schell, K.G., Lemke, F., Bucharsky, E.C. et al. Microstructure and mechanical properties of Li0.33La0.567TiO3 . J Mater Sci 52, 2232–2240 (2017). https://doi.org/10.1007/s10853-016-0516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0516-1

Keywords

Navigation