Skip to main content
Log in

Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Creep phenomenon is a common mechanical behavior in nanocrystalline nickel (Ni) at high temperature that may affect component function and lead to material failure. In this paper, we systematically study the effects of temperature, stress, and grain size (GS) on creep behavior at high temperature in nanocrystalline Ni by molecular dynamics simulation. Three nanocrystalline Ni models with different GS and a single-crystal Ni model are built for creep behavior simulation. Stress exponent, GS exponent and microstructure characteristics during creep simulation are used to describe steady-state creep mechanism. An obvious creep phenomenon is observed in nanocrystalline Ni, but not in single-crystal Ni; primary creep and steady-state creep phenomenon both occur in nanocrystalline Ni during creep simulation. With increase of temperature and stress level, decrease of GS, creep mechanisms are discovered to change from (1) lattice diffusion and grain boundary (GB) sliding to (2) GB diffusion and GB sliding and then to (3) dislocation nucleation. The similar creep mechanism transition tendency is also found in smaller GS sample at lower temperature. The variation of stress exponent and GS exponent obtained from the simulation results is consistent with creep mechanism theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Gleiter H (1995) Nanocrystalline Materials. Int Mater Rev 40:41–64

    Article  Google Scholar 

  2. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  Google Scholar 

  3. Kumar KS, Swygenhoven HV, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774

    Article  Google Scholar 

  4. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  5. Wang N, Wang ZR, Aust KT, Erb U (1997) Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater Sci Eng A 237:150–158

    Article  Google Scholar 

  6. Yin WM, Whang SH, Mirshams R, Xiao CH (2001) Creep behavior of nanocrystalline nickel at 290 and 373 K. Mater Sci Eng A 301:18–22

    Article  Google Scholar 

  7. Wang CL, Lai YH, Huang JC, Nieh TG (2010) Creep of nanocrystalline nickel: a direct comparison between uniaxial and nanoindentation creep. Scripta Mater 62:175–178

    Article  Google Scholar 

  8. Alder BJ, Wainwright TE (2004) Phase Transition for a Hard Sphere System. J Chem Phys 27:1208–1209

    Article  Google Scholar 

  9. Keblinski P, Wolf D, Gleiter H (1998) Molecular-dynamics simulation of grain-boundary diffusion creep. Interface Sci 6:205–212

    Article  Google Scholar 

  10. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater 50:61–73

    Article  Google Scholar 

  11. Millett PC, Desai T, Yamakov V, Wolf D (2008) Atomistic simulations of diffusional creep in a nanocrystalline body-centered cubic material. Acta Mater 56:3688–3698

    Article  Google Scholar 

  12. Wang YJ, Ishii A, Ogata S (2011) Transition of creep mechanism in nanocrystalline metals. Phys Rev B 2025:129–139

    Google Scholar 

  13. Wang YJ, Ishii A, Ogata S (2012) Grain Size Dependence of Creep in Nanocrystalline Copper by Molecular Dynamics. Mater Trans 53:156–160

    Article  Google Scholar 

  14. Bhatia MA, Mathaudhu SN, Solanki KN (2015) Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg-Y alloys. Acta Mater 99:382–391

    Article  Google Scholar 

  15. Jiao S, Kulkarni Y (2015) Molecular dynamics study of creep mechanisms in nanotwinned metals. Comput Mater Sci 110:254–260

    Article  Google Scholar 

  16. Swygenhoven HV, Caro A (1998) Plastic behavior of nanophase metals studied by molecular dynamics. Phys Rev B 58:11246–11251

    Article  Google Scholar 

  17. Swygenhoven HV, Caro A (1997) Plastic behavior of nanophase Ni: a molecular dynamics computer simulation. Appl Phys Lett 71:1652–1654

    Article  Google Scholar 

  18. Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H (2005) Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater 53:1–40

    Article  Google Scholar 

  19. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47

    Article  Google Scholar 

  20. Mukherjee AK, Bird JE, Dorn JE (1969) Experimental Correlations for High-Temperature Creep. Trans. ASM 62:155–179

    Google Scholar 

  21. Coble RL (1963) A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. J Appl Phys 34:1679–1682

    Article  Google Scholar 

  22. Herring C (1950) Diffusional Viscosity of a Polycrystalline Solid. J Appl Phys 21:437–445

    Article  Google Scholar 

  23. Nabarro FRN (1948) Report of a Conference on the Strength of Solids. Physical Society 75

  24. Bardeen J (1949) Diffusion in Binary Alloys. Phys Rev 76:1403–1405

    Article  Google Scholar 

  25. Li CM (1978) Physical chemistry of some microstructural phenomena. Metall Trans A 9:1353–1380

    Article  Google Scholar 

  26. Gifkins RC (1968) Diffusional Creep Mechanisms. J Am Ceram Soc 51:69–72

    Article  Google Scholar 

  27. Lüthy H, White RA, Sherby OD (1979) Grain boundary sliding and deformation mechanism maps. Materials Science and Engineering 39:211–216

    Article  Google Scholar 

  28. Ashby MF, Jones DRH (1995) Engineering materials 1. An Introduction to Properties, Applications and design. Elsevier, London, pp 274–323

  29. Blum W, Zeng XH (2009) A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall-Petch strengthening and enhanced strain rate sensitivity. Acta Mater 57:1966–1974

    Article  Google Scholar 

  30. Weertman J (1955) Theory of steady-state creep based on dislocation climb. J Appl Phys 26:1213–1217

    Article  Google Scholar 

  31. Weertman J (1957) Steady-State creep of crystals. J Appl Phys 28:1185–1189

    Article  Google Scholar 

  32. Weertman J (1957) Steady-State creep through dislocation climb. J Appl Phys 28:362–364

    Article  Google Scholar 

  33. http://li.mit.edu/Archive/Graphics/A/utils.html

  34. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991

    Article  Google Scholar 

  35. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  Google Scholar 

  36. Parrinello M, Rahman A (1982) Strain fluctuations and elastic constants. J Chem Phys 76:2662–2666

    Article  Google Scholar 

  37. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distribution. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  38. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  39. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  40. Li J (2003) AtomEye: an efficient atomistic configuration viewer. Modelling Simul Mater Sci Eng 11:173–177

    Article  Google Scholar 

  41. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088

    Article  Google Scholar 

  42. Poirier JP (1985) Creep of crystals: high-temperature deformation processes in metals. Cambridge University Press, Cambridge, pp 76–93

    Book  Google Scholar 

  43. Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the State Key Program of National Natural Science Foundation of China (Grant No. 11532010) and National Natural Science Foundation of China (Grant Nos. 11102139 and 11472195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, K., Wu, WP., Zhang, XL. et al. Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel. J Mater Sci 52, 2180–2191 (2017). https://doi.org/10.1007/s10853-016-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0506-3

Keywords

Navigation