Skip to main content
Log in

Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A superwetting three-dimensional (3D) nickel foam was prepared by a facile electrodeposition process. Wettability, surface morphology, and chemical composition were characterized with contact angle test, scanning electron microscopy, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy, respectively. According to the results, the as-prepared 3D nickel foam presented robust superhydrophobicity and superoleophilicity with good mechanical and chemical stability simultaneously. Furthermore, with the superwetting behavior, the nickel foam showed excellent oil/water separation capability with both high efficiency and lasting recyclability. Besides, the simple, low cost, and environmentally friendly fabrication process endows a scale-up of 3D nickel foam for oil/water separation and pollution disposal of leakage of organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang C (2016) A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J Membr Sci 506:60–70

    Article  Google Scholar 

  2. Yang X, He Y, Zeng G, Zhan Y, Pan Y, Shi H, Chen Q (2016) Novel hydrophilic PVDF ultrafiltration membranes based on a ZrO2–multiwalled carbon nanotube hybrid for oil/water separation. J Mater Sci 51(19):8965–8976. doi:10.1007/s10853-016-0147-6

    Article  Google Scholar 

  3. Al-Shamrani A, James A, Xiao H (2002) Separation of oil from water by dissolved air flotation. Coll Surf A 209(1):15–26

    Article  Google Scholar 

  4. Mullin JV, Champ MA (2003) Introduction/overview to in situ burning of oil spills. Spill Sci Technol Bull 8(4):323–330

    Article  Google Scholar 

  5. Ventikos NP, Vergetis E, Psaraftis HN, Triantafyllou G (2004) A high-level synthesis of oil spill response equipment and countermeasures. J Hazard Mater 107(1):51–58

    Article  Google Scholar 

  6. Wong K-FV, Barin E (2003) Oil spill containment by a flexible boom system. Spill Sci Technol Bull 8(5):509–520

    Article  Google Scholar 

  7. Zouboulis A, Avranas A (2000) Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation. Coll Surf A 172(1):153–161

    Article  Google Scholar 

  8. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  Google Scholar 

  9. Blossey R (2003) Self-cleaning surfaces—virtual realities. Nat Mater 2(5):301–306

    Article  Google Scholar 

  10. Deng X, Mammen L, Butt H-J, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335(6064):67–70

    Article  Google Scholar 

  11. Liu Y, Li S, Zhang J, Liu J, Han Z, Ren L (2015) Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate. Corros Sci 94:190–196

    Article  Google Scholar 

  12. Fan Y, He Y, Luo P, Chen X, Liu B (2016) A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel. Appl Surf Sci 368:435–442

    Article  Google Scholar 

  13. Liu Q, Chen D, Kang Z (2015) One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Interfaces 7(3):1859–1867

    Article  Google Scholar 

  14. Sousa MP, Mano JF (2013) Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing. Cellulose 20(5):2185–2190

    Article  Google Scholar 

  15. Sun Z, Liao T, Liu K, Jiang L, Kim JH, Dou SX (2014) Fly-eye inspired superhydrophobic anti-fogging inorganic nanostructures. Small 10(15):3001–3006

    Article  Google Scholar 

  16. Yao L, He J (2014) Broadband antireflective superhydrophilic thin films with outstanding mechanical stability on glass substrates. Chin J Chem 32(6):507–512

    Article  Google Scholar 

  17. Wang B, Guo Z (2013) Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl Phys Lett 103(6):063704

    Article  Google Scholar 

  18. Yu Y, Chen H, Liu Y, Craig V, Li LH, Chen Y (2014) Superhydrophobic and superoleophilic boron nitride nanotube-coated stainless steel meshes for oil and water separation. Adv Mater Interfaces 1(1):1300002

    Article  Google Scholar 

  19. Wu C, Huang X, Wu X, Qian R, Jiang P (2013) Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv Mater 25(39):5658–5662

    Article  Google Scholar 

  20. Zhang J, Ji K, Chen J, Ding Y, Dai Z (2015) A three-dimensional porous metal foam with selective-wettability for oil–water separation. J Mater Sci 50(16):5371–5377. doi:10.1007/s10853-015-9057-2

    Article  Google Scholar 

  21. Wang E, Wang H, Liu Z, Yuan R, Zhu Y (2015) One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil–water separation. J Mater Sci 50(13):4707–4716. doi:10.1007/s10853-015-9021-1

    Article  Google Scholar 

  22. Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc 126(1):62–63

    Article  Google Scholar 

  23. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43(3):357–360

    Article  Google Scholar 

  24. Kong L-H, Chen X-H, Yu L-G, Wu Z-S, Zhang P-Y (2015) Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil–water separation and oil spill cleanup. ACS Appl Mater Interfaces 7(4):2616–2625

    Article  Google Scholar 

  25. Lu Y, Sathasivam S, Song J, Chen F, Xu W, Carmalt CJ, Parkin IP (2014) Creating superhydrophobic mild steel surfaces for water proofing and oil–water separation. J Mater Chem A 2(30):11628–11634

    Article  Google Scholar 

  26. Song J, Huang S, Lu Y, Bu X, Mates JE, Ghosh A, Ganguly R, Carmalt CJ, Parkin IP, Xu W (2014) Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh. ACS Appl Mater Interfaces 6(22):19858–19865

    Article  Google Scholar 

  27. Yang Y, Liu Z, Huang J, Wang C (2015) Multifunctional, robust sponges by a simple adsorption–combustion method. J Mater Chem A 3(11):5875–5881

    Article  Google Scholar 

  28. Zhang X, Li Z, Liu K, Jiang L (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23(22):2881–2886

    Article  Google Scholar 

  29. Zang D, Wu C, Zhu R, Zhang W, Yu X, Zhang Y (2013) Porous copper surfaces with improved superhydrophobicity under oil and their application in oil separation and capture from water. Chem Commun 49(75):8410–8412

    Article  Google Scholar 

  30. Leventis N, Chidambareswarapattar C, Bang A, Sotiriou-Leventis C (2014) Cocoon-in-web-like superhydrophobic aerogels from hydrophilic polyurea and use in environmental remediation. ACS Appl Mater Interfaces 6(9):6872–6882

    Article  Google Scholar 

  31. Li R, Chen C, Li J, Xu L, Xiao G, Yan D (2014) A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. J Mater Chem A 2(9):3057–3064

    Article  Google Scholar 

  32. Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21(24):4699–4704

    Article  Google Scholar 

  33. Zhou X, Zhang Z, Xu X, Men X, Zhu X (2013) Facile fabrication of superhydrophobic sponge with selective absorption and collection of oil from water. Ind Eng Chem Res 52(27):9411–9416

    Article  Google Scholar 

  34. Wang L, Yang S, Wang J, Wang C, Chen L (2011) Fabrication of superhydrophobic TPU film for oil–water separation based on electro spinning route. Mater Lett 65(5):869–872

    Article  Google Scholar 

  35. Guo W, Zhang Q, Xiao H, Xu J, Li Q, Pan X, Huang Z (2014) Cu mesh’s super-hydrophobic and oleophobic properties with variations in gravitational pressure and surface components for oil/water separation applications. Appl Surf Sci 314:408–414

    Article  Google Scholar 

  36. Wang L, Pan K, Li L, Cao B (2014) Surface hydrophilicity and structure of hydrophilic modified PVDF membrane by nonsolvent induced phase separation and their effect on oil/water separation performance. Ind Eng Chem Res 53(15):6401–6408

    Article  Google Scholar 

  37. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347(6226):1132–1135

    Article  Google Scholar 

  38. Wang P, Zhang D, Lu Z (2015) Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence. Corros Sci 90:23–32

    Article  Google Scholar 

  39. Liu T, Chen S, Cheng S, Tian J, Chang X, Yin Y (2007) Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochim Acta 52(28):8003–8007

    Article  Google Scholar 

  40. Yoshida T, Yamasaki K (1981) The core-level binding energies and the structures of nickel complexes. Bull Chem Soc Jpn 54(3):935–936

    Article  Google Scholar 

  41. Matienzo J, Yin LI, Grim SO, Swartz WE Jr (1973) X-ray photoelectron spectroscopy of nickel compounds. Inorg Chem 12(12):2762–2769

    Article  Google Scholar 

  42. Wang P, Zhang D, Qiu R, Wu J (2014) Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium. Corros Sci 83:317–326

    Article  Google Scholar 

  43. Cui Z, Wang Q, Xiao Y, Su C, Chen Q (2008) The stability of superhydrophobic surfaces tested by high speed current scouring. Appl Surf Sci 254(10):2911–2916

    Article  Google Scholar 

Download references

Acknowledgements

YH gratefully acknowledges Prof. H. Wang Analysis and Testing Center of Sichuan University for useful discussions and supports. The authors thank H. Wang for assistance with SEM measurements. This work was supported by the Youth science and technology creative group fund of Southwest Petroleum University (2015CXTD03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi He or Yi Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., He, Y., Fan, Y. et al. Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation. J Mater Sci 52, 2169–2179 (2017). https://doi.org/10.1007/s10853-016-0505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0505-4

Keywords

Navigation