Skip to main content

Advertisement

Log in

Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultrafast rechargeable Li-ion batteries are most urgently needed for personal electronics and commercial application since they could fuel various energy applications. These days, much time and efforts have been paid on the research of ultrafast rechargeable Li-ion batteries, however, less breakthrough was appeared. In this manuscript, the CuCr2O4@RGO, a new-type of nanocomposite material, demonstrates a promising future application when it was used as an anode material of the Li-ion batteries. The Li-ion batteries displays a specific capacity of about 410 mAh g−1 and a coulombic efficiency of approximately 98 % at the discharge/charge current rate of 1000 mA g−1. We also found that the batteries constructed by CuCr2O4@RGO nanocomposites as active anode materials can be fully charged within 5 min, with a current density of 4000 mA g−1 and strive against more than 900 cycles without capacity decay. All the results indicate that the CuCr2O4@RGO nanocomposites with spinel structure of the mixed transitional metal oxide are promising for the anode materials of ultrafast rechargeable Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5

Similar content being viewed by others

References

  1. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786

    Article  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  4. Armand M, Tarascon JM (2008) Issues and challenges facing rechargeable lithium batteries. Nature 451:652–657

    Article  Google Scholar 

  5. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  6. Yue GH, Zhang XQ, Zhao YC, Xie QS, Zhang XX, Peng DL (2014) High performance of Ge@ C nanocables as the anode for lithium ion batteries. RSC Adv 4:21450–21455

    Article  Google Scholar 

  7. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  Google Scholar 

  8. Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24:5045–5064

    Article  Google Scholar 

  9. Yue GH, Zhao YC, Wang CG, Zhang XX, Zhang XQ, Xie QS (2015) Flower-like nickel oxide nanocomposites anode materials for excellent performance lithium-ion batteries. Electrochim Acta 152:315–322

    Article  Google Scholar 

  10. Wang JJ, Li YL, Sun XL (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy 2:443–467

    Article  Google Scholar 

  11. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  12. Yuan C, Wu Hao B, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504

    Article  Google Scholar 

  13. Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74:094105

    Article  Google Scholar 

  14. Wang Q, Wang X, Xu J, Xia O, Hou X, Chen D, Wang R, Shen G (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44–51

    Article  Google Scholar 

  15. Zhou D, Su X, Boese M, Wang R, Zhang H (2014) Ni (OH)2@Co (OH)2 hollow nanohexagons: controllable synthesis, facet-selected competitive growth and capacitance property. Nano Energy 5:52–59

    Article  Google Scholar 

  16. He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695

    Article  Google Scholar 

  17. Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sour 172:379–387

    Article  Google Scholar 

  18. Yuan W, Liu X, Li L (2014) Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation. Appl Surf Sci 319:350–357

    Article  Google Scholar 

  19. Acharyya SS, Ghosh S, Tiwari R, Pendem C, Sasaki T, Bal R (2015) Synergistic Effect between ultrasmall Cu (II) oxide and CuCr2O4 spinel nanoparticles in selective hydroxylation of benzene to phenol with air as oxidant. ACS Catal 5:2850–2858

    Article  Google Scholar 

  20. Yan J, Zhang L, Yang H, Tang Y, Lu Zh, Guo S, Dai Y, Han Y, Yao M (2009) CuCr2O4/TiO2 heterojunction for photocatalytic H 2 evolution under simulated sunlight irradiation. J Sol Energy 83:1534–1539

    Article  Google Scholar 

  21. Bajaj R, Sharma M, Bahadur D (2013) Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans 42:6736–6744

    Article  Google Scholar 

  22. Pan L, Li L, Bao X, Chen Y (2012) Highly photocatalytic activity for p-nitrophenol degradation with spinel-structured CuCr2O4. Micro Nano Lett 5:415–418

    Article  Google Scholar 

  23. Beshkar F, Zinatloo-Ajabshir S, Salavati-Niasari M (2015) Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J Mater Sci 26:5043–5051

    Google Scholar 

  24. Lao M, Shun J, Shao L, Lin X, Wu K, Shui M, Li P, Long N, Ren Y (2014) Enhanced electrochemical performance of Ag-coated CuCr2O4 as anode material for lithium-ion batteries. Ceram Int 40:11899–11904

    Article  Google Scholar 

  25. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    Article  Google Scholar 

  26. Niu Z, Liu L, Zhang L et al (2014) A universal strategy to prepare functional porous graphene hybrid architectures. Adv Mater 26:3681–3687

    Article  Google Scholar 

  27. De S, Mandal S (2013) Surfactant-assisted shape control of copper nanostructures. Colloids Surf A 421:72–83

    Article  Google Scholar 

  28. Hashempour M, Razavizadeh H, Rezaie H, Hashempour M, Ardestani M (2010) Chemical mechanism of precipitate formation and pH effect on the morphology and thermochemical co-precipitation of W–Cu nanocomposite powders. Mater Chem Phys 123:83–90

    Article  Google Scholar 

  29. Heaton BT, Jacob C, Page P (1996) Transition metal complexes containing hydrazine and substituted hydrazines. Coordin Chem Rev 154:193–229

    Article  Google Scholar 

  30. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  Google Scholar 

  31. Acharyya SS, Ghosh S, Bal R (2014) Fabrication of three-dimensional (3D) raspberry-like copper chromite spinel catalyst in a facile hydrothermal route and its activity in selective hydroxylation of benzene to phenol. ACS Appl Mater Interface 6:14451–14459

    Article  Google Scholar 

  32. Tao HC, Fan LZ, Mei Y et al (2011) Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem Commun 13:1332–1335

    Article  Google Scholar 

  33. Xiao L, Sehlleier YH, Dobrowolny S et al (2015) Si-CNT/rGO Nanoheterostructures as high-performance lithium-ion-battery Anodes. Chem Electro Chem 2:1983–1990

    Google Scholar 

  34. Chang J, Huang X, Zhou G et al (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764

    Article  Google Scholar 

  35. Chen J, Xia XH, Tu JP, Xiong QQ, Yu YX, Wang XL (2012) Co3O4-C core–shell nanowire array as an advanced anode material for lithium ion batteries. J Mater Chem 22:15056–15061

    Article  Google Scholar 

  36. Guo B, Chi M, Sun XG, Dai S (2012) Mesoporous carbon–Cr2O3 composite as an anode material for lithium ion batteries. J Power Sour 205:495–499

    Article  Google Scholar 

  37. Wang T, Xie G, Zhu J et al (2015) Elastic reduced graphene oxide nanosheets embedded in germanium nanofiber matrix as anode material for high-performance Li-ion battery. Electrochim Acta 186:64–70

    Article  Google Scholar 

  38. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2001) Searching for new anode materials for the Li-ion technology: time to deviate from the usual path. J Power Sour 97:235–239

    Article  Google Scholar 

  39. Wang SQ, Zhang JY, Chen CH (2007) Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scripta Mater 57:337–340

    Article  Google Scholar 

  40. Xie Q, Ma Y, Zhang X, Guo H, Lu A, Wang L, Yue G, Peng D (2014) Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries. Electrochim Acta 141:374–383

    Article  Google Scholar 

  41. Bijelić M, Liu X, Sun Q et al (2015) Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity. J Mater Chem A 3:14759–14767

    Article  Google Scholar 

  42. Chen H, Wang C, Dong W et al (2014) Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett 15:798–802

    Article  Google Scholar 

  43. Zhu XD, Tian J, Le SR, Zhang NQ, Sun KN (2013) Improved electrochemical performance of CuCrO2 anode with CNTs as conductive agent for lithium ion batteries. Mater Lett 97:113–116

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Science Foundation of China (Grant Nos. 11572271, 51171158, 51371154, and 11405144) and the National Basic Research Program of China (Grant No. 2012CB933103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Yue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.G., Liu, J.D., Li, X. et al. Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries. J Mater Sci 52, 2131–2141 (2017). https://doi.org/10.1007/s10853-016-0501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0501-8

Keywords

Navigation