Skip to main content
Log in

Synthesizing Bi2O3/BiOCl heterojunctions by partial conversion of BiOCl

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, uniform BiOCl microspheres were used as self-sacrificed template to construct Bi2O3/BiOCl heterojunctions by a simple alkaline treatment method. Details of structure and chemical properties were carefully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy, and Brunauer–Emmett–Teller techniques. The results indicated that BiOCl microspheres composed of numerous nanosheets transformed to rod-like Bi2O3 nanostructures during the alkaline treatment, which resulted in strong visible-light absorption. The as-obtained Bi2O3/BiOCl heterojunctions exhibited remarkably enhanced photocatalytic performance for the degradation of methyl orange (MO) under visible-light irradiation, which was ~1.2 and 2.5 times as that of pure BiOCl and Bi2O3, respectively. The formation of Bi2O3/BiOCl heterojunctions facilitated the transfer and separation of photogenerated charge carriers which was further confirmed by the photocurrent measurement and photoluminescence spectra results. The finding reported here offers a valid in situ route for constructing heterojunction photocatalysts to effectively decompose the organic pollutants in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Tian J, Hao P, Wei N, Cui H, Liu H (2015) 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catal 5:4530–4536

    Article  Google Scholar 

  2. Kozhummal R, Yang Y, Güder F, Hartel A, Lu X, Küçükbayrak UM, Mateo-Alonso A, Elwenspoek M, Zacharias M (2012) Homoepitaxial branching: an unusual polymorph of zinc oxide derived from seeded solution growth. ACS Nano 6:7133–7141

    Article  Google Scholar 

  3. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  5. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  6. Xiong Z, Zhao XS (2012) Nitrogen-doped titanate-anatase core-shell nanobelts with exposed 101 anatase facets and enhanced visible light photocatalytic activity. J Am Chem Soc 134:5754–5757

    Article  Google Scholar 

  7. In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-Codoped TiO2 photocatalysts. J Am Chem Soc 129:13790–13791

    Article  Google Scholar 

  8. Sun M, Zhao Q, Du C, Liu Z (2015) Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors. RSC Adv 5:22740–22752

    Article  Google Scholar 

  9. Lin H, Ding L, Pei Z, Zhou Y, Long J, Deng W, Wang X (2014) Au deposited BiOCl with different facets: on determination of the facet-induced transfer preference of charge carriers and the different plasmonic activity. Appl Catal B 160–161:98–105

    Article  Google Scholar 

  10. Pan L, Zou JJ, Zhang X, Wang L (2011) Water-mediated promotion of dye sensitization of TiO2 under visible light. J Am Chem Soc 133:10000–10002

    Article  Google Scholar 

  11. Jiang J, Zhao K, Xiao X, Zhang L (2012) Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 134:4473–4476

    Article  Google Scholar 

  12. Zhang L, Chen D, Jiao X (2006) Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J Phys Chem B 110:2668–2673

    Article  Google Scholar 

  13. Peng H, Chan CK, Meister S, Zhang XF, Cui Y (2009) Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem Mater 21:247–252

    Article  Google Scholar 

  14. Chen S, Tang W, Hu Y, Fu X (2013) The preparation and characterization of composite bismuth tungsten oxide with enhanced visible light photocatalytic activity. CrystEngComm 15:7943–7950

    Article  Google Scholar 

  15. Iwase A, Kudo A (2010) Photoelectrochemical water splitting using visible light responsive BiVO4 fine particles prepared in an aqueous acetic acid solution. J Mater Chem 20:7536–7542

    Article  Google Scholar 

  16. Xu H, Xu Y, Li H, Xia J, Xiong J, Yin S, Huang C, Wan H (2012) Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst. Dalton Trans 41:3387–3394

    Article  Google Scholar 

  17. Zhang J, Hu Y, Jiang X, Chen S, Meng S, Fu X (2014) Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g–C3N4 with high visible light activity. J Hazard Mater 280:713–722

    Article  Google Scholar 

  18. Li Y, Wang J, Yao H, Dang L, Li Z (2011) Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catal Commun 12:660–664

    Article  Google Scholar 

  19. Hu J, Xu G, Wang J, Lv J, Zhang X, Xie T, Zheng Z, Wu Y (2015) Photocatalytic property of a Bi2O3 nanoparticle modified BiOCl composite with a nanolayered hierarchical structure synthesized by in situ reactions. Dalton Trans 44:5386–5395

    Article  Google Scholar 

  20. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X=Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–2026

    Article  Google Scholar 

  21. Zhang X, Ai Z, Jia F, Zhang L (2008) Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. J Phys Chem C 112:747–753

    Article  Google Scholar 

  22. Etogo A, Hu E, Zhou C, Zhong Y, Hu Y, Hong Z (2015) Facile fabrication of mesoporous BiOCl/(BiO)2CO3/Bi2O3 ternary flower-like heterostructured microspheres with high visible-light-driven photoactivity. J Mater Chem A 3:22413–22420

    Article  Google Scholar 

  23. Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in BiOX (X=Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci Nano 1:90–112

    Article  Google Scholar 

  24. Wang K, Shao C, Li X, Zhang X, Lu N, Miao F, Liu Y (2015) Hierarchical heterostructures of p-type BiOCl nanosheets on electrospun n-type TiO2 nanofibers with enhanced photocatalytic activity. Catal Commun 67:6–10

    Article  Google Scholar 

  25. Jiang J, Zhang L, Li H, He W, Yin JJ (2013) Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale 5:10573–10581

    Article  Google Scholar 

  26. Chakraborty KA, Rawal BS, Han YS (2011) Enhancement of visible-light photocatalytic efficiency of BiOCl/Bi2O3 by surface modification with WO3. Appl Catal A 407:217–223

    Article  Google Scholar 

  27. Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262:144–149

    Article  Google Scholar 

  28. Shamaila S, Sajjad AKL, Chen F, Zhang J (2011) WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interface Sci 356:465–472

    Article  Google Scholar 

  29. Dong F, Sun Y, Fu M, Wu Z, Lee SC (2012) Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J Hazard Mater 219–220:26–34

    Article  Google Scholar 

  30. He Z, Shi Y, Gao C, Wen L, Chen J, Song S (2014) BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J Phys Chem C 118:389–398

    Article  Google Scholar 

  31. Cao J, Xu B, Lin H, Luo B, Chen S (2012) Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. Catal Commun 26:204–208

    Article  Google Scholar 

  32. Lv C, Chen G, Sun J, Zhou Y, Fan S, Zhang C (2015) Realizing nanosized interfacial contact via constructing BiVO4/Bi4V2O11 element-copied heterojunction nanofibers for superior photocatalytic properties. Appl Catal B 179:54–60

    Article  Google Scholar 

  33. Liu X, Su Y, Zhao Q, Du C, Liu Z (2016) Constructing Bi24O31Cl10/BiOCl heterojunction via a simple thermal annealing route for achieving enhanced photocatalytic activity and selectivity. Sci Rep 6:28689

    Article  Google Scholar 

  34. Myung Y, Wu F, Banerjee S, Stoica A, Zhong H, Lee SS, Fortner J, Yang L, Banerjee P (2015) Highly conducting, n-type Bi12O15Cl6 nanosheets with superlattice-like structure. Chem Mater 27:7710–7718

    Article  Google Scholar 

  35. Li N, Hua X, Wang K, Jin Y, Xu J, Chen M, Teng F (2014) In situ synthesis of uniform Fe2O3/BiOCl p/n heterojunctions and improved photodegradation properties for mixture dyes. Dalton Trans 43:13742–13750

    Article  Google Scholar 

  36. Sood S, Umar A, Mehta SK, Kansal SK (2015) α-Bi2O3 nanorods: an efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol. Ceram Int 41:3355–3364

    Article  Google Scholar 

  37. Jiang G, Wang X, Wei Z, Li X, Xi X, Hu R, Tang B, Wang R, Wang S, Wang T, Chen W (2013) Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres. J Mater Chem A 1:2406–2410

    Article  Google Scholar 

  38. Hameed A, Aslam M, Ismail IMI, Salah N, Fornasiero P (2015) Sunlight induced formation of surface Bi2O4−x–Bi2O3 nanocomposite during the photocatalytic mineralization of 2-chloro and 2-nitrophenol. Appl Catal B 163:444–451

    Article  Google Scholar 

  39. Hu R, Xiao X, Tu S, Zuo X, Nan J (2015) Synthesis of flower-like heterostructured β-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol. Appl Catal B 163:510–519

    Article  Google Scholar 

  40. Jiang HY, Liu J, Cheng K, Sun W, Lin J (2013) Enhanced visible light photocatalysis of Bi2O3 upon fluorination. J Phys Chem C 117:20029–20036

    Article  Google Scholar 

  41. Jiang HY, Liu G, Li M, Liu J, Sun W, Ye J, Lin J (2015) Efficient organic degradation under visible light by α-Bi2O3 with a CuOx-assistant electron transfer process. Appl Catal B 163:267–276

    Article  Google Scholar 

  42. Shuk P, Wiemhöfer HD, Guth U, Göpel W, Greenblatt M (1996) Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 89:179–196

    Article  Google Scholar 

  43. Zhong S, Zhang F, Lu W, Wang T, Qu L (2015) One-step synthesis of Bi2WO6/Bi2O3 loaded reduced graphene oxide multicomponent composite with enhanced visible-light photocatalytic activity. RSC Adv 5:68646–68654

    Article  Google Scholar 

  44. Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J (2015) Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J Am Chem Soc 137:8356–8359

    Article  Google Scholar 

  45. He G, Xing C, Xiao X, Hu R, Zuo X, Nan J (2015) Facile synthesis of flower-like Bi12O17Cl2/β-Bi2O3 composites with enhanced visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Appl Catal B 170–171:1–9

    Google Scholar 

  46. Wu J, Duan F, Zheng Y, Xie Y (2007) Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J Phys Chem C 111:12866–12871

    Article  Google Scholar 

  47. Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H (2015) Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl Mater Interfaces 7:20111–20123

    Article  Google Scholar 

  48. Qiao R, Mao M, Hu E, Zhong Y, Ning J, Hu Y (2015) Facile formation of mesoporous BiVO4/Ag/AgCl heterostructured microspheres with enhanced visible-light photoactivity. Inorg Chem 54:9033–9039

    Article  Google Scholar 

  49. Peng Y, Yan M, Chen QG, Fan CM, Zhou HY, Xu AW (2014) Novel one-dimensional Bi2O3-Bi2WO6 p–n hierarchical heterojunction with enhanced photocatalytic activity. J Mater Chem A 2:8517–8524

    Article  Google Scholar 

  50. Cui W, An W, Liu L, Hu J, Liang Y (2014) Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant. J Hazard Mater 280:417–427

    Article  Google Scholar 

  51. Wu Y, Lu G (2014) The roles of density-tunable surface oxygen vacancy over bouquet-like Bi2O3 in enhancing photocatalytic activity. Phys Chem Chem Phys 16:4165–4175

    Article  Google Scholar 

  52. Guan M, Xiao C, Zhang J, Fan S, An R, Cheng Q, Xie J, Zhou M, Ye B, Xie Y (2013) Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J Am Chem Soc 135:10411–10417

    Article  Google Scholar 

  53. Tan C, Zhu G, Hojamberdiev M, Okada K, Liang J, Luo X, Liu P, Liu Y (2014) Co3O4 nanoparticle-loaded BiOCl nanoplates with the domiant 001 facets: efficient photodegradation of organic dyes under visible light. Appl Catal B 152–153:425–436

    Article  Google Scholar 

  54. Shan L, Wang G, Liu L, Wu Z (2015) Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl (001) core-shell heterojunction. J Mol Catal A 406:145–151

    Article  Google Scholar 

  55. Shan L, Wang G, Li D, San X, Liu L, Dong L, Wu Z (2015) Band alignment and enhanced photocatalytic activation of α/β-Bi2O3 heterojunction via in situ phase transformation. Dalton Trans 44:7835–7843

    Article  Google Scholar 

  56. Zhang W, Zhang Q, Dong F (2013) Visible-light photocatalytic removal of NO in sir over BiOX (X=Cl, Br, I) single-crystal nanoplates prepared at room temperature. Ind Eng Chem Res 52:6740–6746

    Article  Google Scholar 

  57. Weng B, Xu F, Xu J (2014) Synthesis of hierarchical Bi2O3/Bi4Ti3O12 p-n junction nanoribbons on carbon fibers from (001) facet dominant TiO2 nanosheets. RSC Adv 4:56682–56689

    Article  Google Scholar 

  58. Patil RA, Wei MK, Yeh PH, Liang JB, Gao WT, Lin JH, Liou Y, Ma YR (2016) Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence. Nanoscale 8:3565–3571

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 51462025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfang Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Liu, X., Xing, Y. et al. Synthesizing Bi2O3/BiOCl heterojunctions by partial conversion of BiOCl. J Mater Sci 52, 2117–2130 (2017). https://doi.org/10.1007/s10853-016-0499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0499-y

Keywords

Navigation