Skip to main content

Advertisement

Log in

Effects of pressure on microstructure and mechanical properties of SiCp/2024 Al-based composites fabricated by powder thixoforming

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SiCp/2024 composites were fabricated by powder thixoforming, and the effects of pressure on the microstructure and mechanical properties were studied. The results indicate that the pressure applied during thixoforming affected the secondary solidification behavior by altering the solidification rate, microstructure compactness, plastic deformation, loading capacity of SiCp, and thus the fracture regimes and the mechanical properties. The tensile strengths increased as the pressure increased from 128 to 224 MPa because of the improved compactness, enhanced work hardening and loading capacity of SiCp, and increased concentration of the θ-phase and then decreased owing to the serious stress concentration and θ-phase harmfulness. The composite thixoformed under 224 MPa exhibited the largest improvements, with an ultimate tensile strength of 388 MPa, a 0.2 % offset yield strength (YS) of 297 MPa, and an elongation of 3.8 %, which were increased by 29.3 and 35 % and decreased by 63.5 %, respectively, compared with those of the 2024 alloy. The increment in the tensile strength was due to the synergetic contributions resulting from the strengthening mechanisms of load transfer, thermal mismatch, geometrically necessary dislocations, and grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Bathula S, Anandani RC, Dhar A, Srivastava AK (2012) Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater Sci Eng, A 545:97–102. doi:10.1016/j.msea.2012.02.095

    Article  Google Scholar 

  2. Torralba JM, Costa CED, Velasco F (2003) P/M aluminum matrix composites: an overview. J Mater Process Technol 133:203–206

    Article  Google Scholar 

  3. Zhou J, Drużdżel AT, Duszczyk J (1999) The effect of extrusion parameters on the fretting wear resistance of Al-based composites produced via powder metallurgy. J Mater Sci 34:5089–5097. doi:10.1023/A:1004761116824

    Article  Google Scholar 

  4. Zu LJ, Luo SJ (2001) Study on the powder mixing and semi-solid extrusion forming process of SiCp/2024Al composites. J Mater Process Technol 114:189–193. doi:10.1016/S0924-0136(01)00738-5

    Article  Google Scholar 

  5. Chen CM, Yang CC, Chao CG (2004) Thixocasting of hypereutectic Al–25Si–2.5Cu–1 Mg–0.5Mn alloys using densified powder compacts. Mater Sci Eng, A 366:183–194. doi:10.1016/j.msea.2003.09.063

    Article  Google Scholar 

  6. Fan Z (2002) Semisolid metal processing. Int Mater Rev 47:49–85

    Article  Google Scholar 

  7. Li PB, Chen TJ, Zhang SQ, Guan RG (2015) Research on semisolid microstructural evolution of 2024 aluminum alloy prepared by powder thixoforming. Metals 5:547–564

    Article  Google Scholar 

  8. Li PB, Chen TJ, Ma Y, Hao Y, Guan RG (2016) Microstructural evolution during partial remelting of a 2024 aluminum alloy prepared by cold pressing ball-milled alloy powders. Mater Trans 57:91–98. doi:10.2320/matertrans.M2015367

    Article  Google Scholar 

  9. Li PB, Chen TJ, Zhan SQ, Wang YJ (2015) Effects of partial remelting on the microstructure evolution of SiCp/2024p aluminum composites prepared by alloy powder cold pressing. Spec Cast Nonferrous Alloys 35:260–264

    Google Scholar 

  10. Sukumaran K, Ravikumar KK, Pillai SGK, Rajan TPD, Ravi M, Pillai RM, Pai BC (2008) Studies on squeeze casting of Al 2124 alloy and 2124-10% SiCp metal matrix composite. Mater Sci Eng, A 490:235–241

    Article  Google Scholar 

  11. Yong MS, Clegg AJ (2004) Process optimisation for a squeeze cast magnesium alloy. J Mater Process Technol 145:134–141

    Article  Google Scholar 

  12. Kurnaz SC, Sevik H, Açıkgöz S, Özel A (2011) Influence of titanium and chromium addition on the microstructure and mechanical properties of squeeze cast Mg–6Al alloy. J Alloys Compd 509:3190–3196

    Article  Google Scholar 

  13. Beffort O, Long SY, Cayron C, Kuebler J, Buffat PA (2007) Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration. Compos Sci Technol 67:737–745

    Article  Google Scholar 

  14. Daoud A (2005) Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration. Mater Sci Eng, A 391:114–120. doi:10.1016/j.msea.2004.08.075

    Article  Google Scholar 

  15. Manson-Whitton ED, Stone IC, Jones JR, Grant PS, Cantor B (2002) Isothermal grain coarsening of spray formed alloys in the semi-solid state. Acta Mater 50:2517–2535

    Article  Google Scholar 

  16. Zoqui EJ, Shehata MT, Paes M, Kao V, Es-Sadiqi E (2002) Morphological evolution of SSM A356 during partial remelting. Mater Sci Eng, A 325:38–53

    Article  Google Scholar 

  17. Chen TJ, Huang LK, Huang XF, Ma Y, Hao Y (2013) Effects of mould temperature and grain refiner amount on microstructure and tensile properties of thixoforged AZ63 magnesium alloy. J Alloys Compd 556:167–177

    Article  Google Scholar 

  18. Martinez RA, Karma A, Flemings MC (2006) Spheroidal particle stability in semisolid processing. Metall Mater Trans A 37:2807–2815

    Article  Google Scholar 

  19. Gallerneault M, Durrant G, Cantor B (1996) The squeeze casting of hypoeutectic binary Al-Cu. Metall Mater Trans A 27:4121–4132

    Article  Google Scholar 

  20. Sekhar JA, Abbaschian GJ, Mehrabian R (1979) Effect of pressure on metal-die heat transfer coefficient during solidification. Mater Sci Eng 40:105–110. doi:10.1016/0025-5416(79)90014-4

    Article  Google Scholar 

  21. Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101:1–9

    Article  Google Scholar 

  22. Chen TJ, Huang LK, Huang XF, Ma Y, Hao Y (2014) Effects of reheating temperature and time on microstructure and tensile properties of thixoforged AZ63 magnesium alloy. Mater Sci Technol 30:96–108

    Article  Google Scholar 

  23. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminum and wolfram. Acta Metall 1:22–31

    Article  Google Scholar 

  24. Smallman RE, Westmacott KH (1957) Stacking faults in face-centred cubic metals and alloys. Philos Mag 2:669–683

    Article  Google Scholar 

  25. Cheng NP, Zeng SM, Liu ZY (2008) Preparation, microstructures and deformation behavior of SiCP/6066Al composites produced by PM route. J Mater Process Technol 202:27–40. doi:10.1016/j.jmatprotec.2007.08.044

    Article  Google Scholar 

  26. Arsenault RJ, Wang L, Feng CR (1991) Strengthening of composites due to microstructural changes in the matrix. Acta Metall Mater 39:47–57. doi:10.1016/0956-7151(91)90327-W

    Article  Google Scholar 

  27. Hansen N (1977) The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall 25:863–869. doi:10.1016/0001-6160(77)90171-7

    Article  Google Scholar 

  28. Miller WS, Humphreys FJ (1991) Strengthening mechanisms in particulate metal matrix composites. Scr Metall Mater 25:33–38

    Article  Google Scholar 

  29. Sekine H, Chen R (1995) A combined microstructure strengthening analysis of SiCp/Al metal matrix composites. Composites 26:183–188

    Article  Google Scholar 

  30. Chen CP, Tsao CYA (1997) Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior. Acta Mater 45:1955–1968. doi:10.1016/S1359-6454(96)00312-6

    Article  Google Scholar 

  31. Nardone VC, Prewo KM (1986) On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr Metall 20:43–48. doi:10.1016/0036-9748(86)90210-3

    Article  Google Scholar 

  32. Wu Y, Lavernia EJ (1992) Strengthening behavior of particulate reinforced MMCs. Scr Metall Mater 27:173–178

    Article  Google Scholar 

  33. Sekine H, Chen R (1995) A combined microstructure strengthening analysis of SiCp/Al metal matrix composites. Composites 26:183–188

    Article  Google Scholar 

  34. Lee JC, Subramanian KN (1992) Failure behaviour of particulate-reinforced aluminium alloy composites under uniaxial tension. J Mater Sci 27:5453–5462. doi:10.1007/BF00541606

    Article  Google Scholar 

  35. Li ZF, Dong J, Zeng XQ, Lu C, Ding WJ (2007) Influence of Mg17Al12 intermetallic compounds on the hot extruded microstructures and mechanical properties of Mg–9Al–1Zn alloy. Mater Sci Eng, A 466:134–139. doi:10.1016/j.msea.2007.02.029

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks for the financial support provided by the Basic Scientific Fund of Gansu University (Grant No. G2014-07), the Program for New Century Excellent Talents of the University of China (Grant No. NCET-10-0023), and the Program for Hongliu Outstanding Youth of the Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Chen, T. & Qin, H. Effects of pressure on microstructure and mechanical properties of SiCp/2024 Al-based composites fabricated by powder thixoforming. J Mater Sci 52, 2045–2059 (2017). https://doi.org/10.1007/s10853-016-0493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0493-4

Keywords

Navigation