Effect of the ZrO2 concentration on the crystallization behavior and the mechanical properties of high-strength MgO–Al2O3–SiO2 glass–ceramics

Abstract

High-strength, colorless glass–ceramics in the MgO/Al2O3/SiO2 system with high concentrations of ZrO2 and a great potential for technical application, e.g., as high-performance hard disc substrates, are investigated. ZrO2 concentrations from 6 to 9 mol% are added to a stoichiometric cordierite glass to investigate the influence of the concentration of the nucleating agent on the crystallization behavior and the mechanical properties. The phase formation and the microstructure of the glass–ceramics are studied using X-ray diffraction and scanning electron microscopy including electron backscatter diffraction. It is shown that the volume crystallization of ZrO2, a low-/high-quartz solid solution (low-/high-QSS), and spinel is accompanied by the surface crystallization of indialite. This phase offers a much smaller coefficient of thermal expansion than the other crystal phases, which may induce high compressive stresses in the surface layer of the glass–ceramics after cooling and seems to result in excellent mechanical properties of the material. Biaxial flexural strengths of up to 1 GPa were measured. Higher ZrO2 concentrations reduce the surface crystallization of indialite and decrease the mean size of the crystals resulting in a higher translucency. The volume-crystallizing phases and the mechanical properties of the glass–ceramics do not seem to be significantly affected by the analyzed ZrO2 concentrations.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. 1

    Ohsato H, Kim J-S, Cheon C-I, Kagomiya I (2015) Crystallization of indialite/cordierite glass ceramics for millimeter-wave dielectrics. Ceram Int 41:588–593

    Article  Google Scholar 

  2. 2

    Sohn S-B, Choi S-Y, Lee Y-K (2000) Controlled crystallization and characterization of cordierite glass–ceramics for magnetic memory disk substrate. J Mater Sci 35:4815–4821. doi:10.1023/A:1004876829705

    Article  Google Scholar 

  3. 3

    Zdaniewski W (1973) Crystallization and structure of a MgO–Al2O3–SiO2–TiO2 glass–ceramic. J Mater Sci 8:192–202. doi:10.1007/BF00550667

    Article  Google Scholar 

  4. 4

    Diaz-Mora N, Zanotto ED, Hergt R, Müller R (2000) Surface crystallization and texture in cordierite glasses. J Non-cryst Solid 273:81–93

    Article  Google Scholar 

  5. 5

    Berndt S, Gawronski A, Patzig C, Wisniewski W, Höche T, Rüssel C (2015) Oriented crystallization of a β-quartz solid solution from a MgO/Al2O3/SiO2 glass in contact with tetragonal ZrO2 ceramics. RSC Adv 5:15164–15171

    Article  Google Scholar 

  6. 6

    Seidel S, de Meo CE, Kracker M, Wisniewski W, Rüssel C (2016) Oriented growth of a β-quartz solid solution from a MgO–Al2O3–SiO2 glass coated by a Sol-Gel ZrO2 layer. CrystEngComm. 18:5492–5501. doi:10.1039/C5CE02356D

    Article  Google Scholar 

  7. 7

    Karkhanavala MD, Hummel FA (1953) The polymorphism of cordierite. J Am Ceram Soc 36:389–392

    Article  Google Scholar 

  8. 8

    Höland W, Wange P, Carl G, Vogel W, Heidenreich E, Erxleben H (1984) TiO2-haltige hochfeste Glaskeramiken aus dem System SiO2–Al2O3–MgO. Silikattechnik 35:181–184

    Google Scholar 

  9. 9

    Wange P, Höche T, Rüssel C, Schnapp J-D (2002) Microstructure-property relationship in high-strength MgO–Al2O3–SiO2–TiO2 glass-ceramics. J Non-cryst Solid 298:137–145

    Article  Google Scholar 

  10. 10

    Vogel W (1994) Glass chemistry, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  11. 11

    Shakelford JF, Alexander W (2001) Materials science and engineering handbook, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  12. 12

    Shao H, Liang K, Zhou F, Wang G, Hu A (2005) Microstructure and mechanical properties of MgO–Al2O3–SiO2–TiO2 glass–ceramics. Mater Res Bull 40:499–506

    Article  Google Scholar 

  13. 13

    Zdaniewski W (1975) DTA and X-ray analysis study of nucleation and crystallization of MgO–Al2O3–SiO2 glasses containing ZrO2, TiO2 and CeO2. J Am Ceram Soc 58:163–169

    Article  Google Scholar 

  14. 14

    Wang J, Cheng J, Tang L, Tian P (2013) Effect of nucleating agents and heat treatments on the crystallization of magnesium aluminosilicate transparent glass–ceramics. J Wuhan Univ Technol 28:69–72

    Article  Google Scholar 

  15. 15

    Cormier L, Dargaud O, Calas G, Jousseaume C, Papin S, Trcera N, Cognigni A (2015) Zr environment and nucleation role in aluminosilicate glasses. Mater Chem Phys 152:41–47

    Article  Google Scholar 

  16. 16

    Dittmer M, Rüssel C (2012) Colorless and high strength MgO/Al2O3/SiO2 glass–ceramic dental material using zirconia as nucleating agent. J Biomed Mater Res B 100B:463–470

    Article  Google Scholar 

  17. 17

    Dittmer M, Müller M, Rüssel C (2010) Self-organized nanocrystallinity in MgO–Al2O3–SiO2 glasses with ZrO2 as nucleating agent. Mater Chem Phys 124:1083–1088

    Article  Google Scholar 

  18. 18

    Dittmer M, Yamamoto CF, Bocker C, Rüssel C (2011) Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass–ceramics with and without the addition of yttria. Solid State Sci 13:2146–2153

    Article  Google Scholar 

  19. 19

    Gawronski A, Patzig C, Höche T, Rüssel C (2015) Effect of Y2O3 and CeO2 on the crystallisation behaviour and mechanical properties of glass–ceramics in the system MgO/Al2O3/SiO2/ZrO2. J Mater Sci 50:1986–1995. doi:10.1007/s10853-014-8765-3

    Article  Google Scholar 

  20. 20

    Patzig C, Dittmer M, Gawronski A, Höche T, Rüssel C (2014) Crystallization of ZrO2-nucleated MgO/Al2O3/SiO2 glasses—a TEM Study. CrystEngComm 16:6578–6587

    Article  Google Scholar 

  21. 21

    Patzig C, Dittmer M, Höche T, Rüssel C (2012) Temporal evolution of crystallization in MgO–Al2O3–SiO2–ZrO2 glass ceramics. Cryst Growth Des 12:2059–2067

    Article  Google Scholar 

  22. 22

    Hunger A, Carl G, Gebhardt A, Rüssel C (2008) Ultra-high thermal expansion glass–ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristobalite. J Non-cryst Solid 354:5402–5407

    Article  Google Scholar 

  23. 23

    Hunger A, Carl G, Rüssel C (2010) Formation of nano-crystalline quartz crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 glasses. Solid State Sci 12:1570–1574

    Article  Google Scholar 

  24. 24

    Chen GH (2007) Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass–ceramics. J Mater Sci 42:7239–7244. doi:10.1007/s10853-007-1548-3

    Article  Google Scholar 

  25. 25

    Schreyer W, Schairer JF (1961) Metastable solid solutions with quartz-type structures on the join SiO2—MgAl2O4. Z Kristallogr 116:60–82

    Article  Google Scholar 

  26. 26

    Blumenauer H (1994) Werkstoffprüfung, 6th edn. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  27. 27

    Evans AG, Charles EA (1976) Fracture toughness determinations by indentation. J Am Ceram Soc 59:371–372

    Article  Google Scholar 

  28. 28

    Smith DK, Cline CF (1962) Verification of existence of cubic zirconia at high temperature. J Am Ceram Soc 45:249–250

    Article  Google Scholar 

  29. 29

    Duwez P, Odell F, Brown FH (1952) Stabilization of zirconia with calcia and magnesia. J Am Ceram Soc 35:107–113

    Article  Google Scholar 

  30. 30

    Garvie RC (1978) Stabilization of the tetragonal structure in zirconia microcrystals. J Phys Chem 82:218–224

    Article  Google Scholar 

  31. 31

    Bocker C, Kouli M, Völksch G, Rüssel C (2014) New insights into the crystallization of cordierite from a stoichiometric glass by in situ high-temperature SEM. J Mater Sci 49:2795–2801. doi:10.1007/s10853-013-7984-3

    Article  Google Scholar 

  32. 32

    Wisniewski W, Baptista CA, Müller M, Völksch G, Rüssel C (2011) Surface crystallization of cordierite from glass studied by high-temperature X-ray diffraction and electron backscatter diffraction (EBSD). Cryst Growth Des 11:4660–4666

    Article  Google Scholar 

  33. 33

    Hirose Y, Doi H, Kamigaito O (1984) Thermal expansion of hot-pressed cordierite glass ceramic. J Mater Sci Lett 3:153–155. doi:10.1007/BF00723101

    Article  Google Scholar 

  34. 34

    Gawronski A, Rüssel C (2013) High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase. J Mater Sci 48:3461–3468. doi:10.1007/s10853-013-7136-9

    Article  Google Scholar 

  35. 35

    Fischer H, Marx R (2002) Fracture toughness of dental ceramics: comparison of bending and indentation method. Dent Mater 18:12–19

    Article  Google Scholar 

  36. 36

    Xu Y, Han J, Lin H, An L (2015) Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics. Regen Biomater 2:239–244

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn Bad Godesberg (Germany) via Project No. RU 417/17-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabrina Seidel.

Ethics declarations

Conflicts of interest

We confirm that no conflicts of interest exist.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seidel, S., Dittmer, M., Wisniewski, W. et al. Effect of the ZrO2 concentration on the crystallization behavior and the mechanical properties of high-strength MgO–Al2O3–SiO2 glass–ceramics. J Mater Sci 52, 1955–1968 (2017). https://doi.org/10.1007/s10853-016-0484-5

Download citation

Keywords

  • ZrO2 Concentration
  • Glass Ceramics
  • Indialite
  • Biaxial Flexural Strength
  • Volume Crystallization