Skip to main content
Log in

Isothermal differential dilatometry based on X-ray analysis applied to stress relaxation in thin ion-beam-sputtered Pt films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Relaxation of stress and point defects in ion-beam-sputtered Pt films with a thickness of 20 and 40 nm during isothermal annealing was investigated. First, isothermal differential dilatometry measurements based on X-ray analysis were carried out between 130 and 400 °C. They show that the relaxation of compressive stress is associated with the formation of vacancies at the surface. From the measurements, an activation enthalpy of 0.14 eV was estimated for the stress relaxation process. In addition, self-diffusion experiments of Pt were carried out on the same type of films using stable 194Pt tracer. From secondary ion mass spectrometry on samples annealed for longer times, an activation enthalpy of 0.5 eV for Pt diffusion in grain boundaries was estimated. The influence of vacancy creation at the surface, vacancy transport, and the annihilation of non-equilibrium bulk interstitials and thermally created vacancies on stress relaxation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Floro JA, Hearne SJ, Hunter JA, Kotula P, Chason E, Seel SC, Thompson CV (2001) The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. J Appl Phys 89(9):4886–4897. doi:10.1063/1.1352563

    Article  Google Scholar 

  2. Abermann R, Kramer R, Mäser J (1978) Structure and internal stress in ultra-thin silver films deposited on MgF2 and SiO substrates. Thin Solid Films 52:215–229

    Article  Google Scholar 

  3. Chaudhari P (1972) Grain growth and stress relief in thin films. J Vac Sic Technol 9(1):520–522. doi:10.1116/1.1316674

    Article  Google Scholar 

  4. Doerner MF, Nix WD (1988) Stresses and deformation processes in thin films on substrates. Crit Rev Solid State Mater Sci 14(3):225–268. doi:10.1080/10408438808243734

    Article  Google Scholar 

  5. Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46(1):1–38. doi:10.1016/0079-6816(94)90005-1

    Article  Google Scholar 

  6. Cammerata RC (1997) Surface and interface stress effects on interfacial and nanostructured materials. Mater Sci Eng 237:180–184

    Article  Google Scholar 

  7. Cammerata RC, Trimble TM, Srolovitz DJ (2000) Surface stress model for intrinsic stresses in thin films. J Mater Res 15(11):2468–2474

    Article  Google Scholar 

  8. Nix WD, Clemens BM (1999) Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films. J Mater Res 14(8):3467–3473

    Article  Google Scholar 

  9. Thompson CV (2000) Structure evolution during processing of polycrystalline films. Annu Rev Mater Sci 30:159–190

    Article  Google Scholar 

  10. Thompson CV, Carel R (1995) Texture development in polycrystalline thin films. Mater Sci Eng 32:211–219

    Article  Google Scholar 

  11. Thompson CV, Carel R (1996) Stress and grain growth in thin films. J Mech Solids 5:657–673

    Article  Google Scholar 

  12. Thornton JA, Tabock J, Hoffman DW (1979) Internal stresses in metallic films deposited by cylindrical magnetron sputtering. Thin Solid Films 64:111–119

    Article  Google Scholar 

  13. Feder R, Novick AS (1958) Use of thermal expansion measurements to detect lattice vacancies near the melting point of pure lead and aluminium. Phys Rev 109(6):1959–1963

    Article  Google Scholar 

  14. Simmons RO, Balluffi RW (1960) Measurements of equilibrium vacancy concentrations in aluminium. Phys Rev 117(1):52–61

    Article  Google Scholar 

  15. Simmons RO, Balluffi RW (1960) Measurement of the equilibrium concentration of lattice vacancies in silver near the melting point. Phys Rev 119(2):600–605

    Article  Google Scholar 

  16. Simmons RO, Balluffi RW (1962) Measurement of equilibrium concentrations of lattice vacancies in Gold. Phys Rev 125(3):862–872

    Article  Google Scholar 

  17. Simmons RO, Balluffi RW (1963) Measurement of equilibrium concentrations of vacancies in copper. Phys Rev 129(4):1533–1544

    Article  Google Scholar 

  18. Gan D, Ho PS, Huang R, Leu J, Maiz J, Scherban T (2005) Isothermal stress relaxation in electroplated Cu Films. I. Mass transport measurements. J Appl Phys 97:103531

    Article  Google Scholar 

  19. Schmidt H, Gupta M, Stahn J, Gutberlet T, Bruns M (2008) How to measure self-diffusivities in the sub-nanometer range. Acta Mater 56:464–470

    Article  Google Scholar 

  20. Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95(2):359–369

    Article  Google Scholar 

  21. Braun C (1997-1999) Parratt32 or the Reflectometry Tool, http://www.helmholtz-berlin.de

  22. http://henke.lbl.gov/cgi-bin/pert_cgi.pl

  23. http://www.ncnr.nist.gov/resources/activation/

  24. Schmidt H (2011) Diffusion studies in the type-B kinetics regime using neutron reflectometry and isotope Multilayers. J Phys 23:105303

    Google Scholar 

  25. Chakravarty S, Jiang M, Tietze U, Lott D, Geue T, Stahn J, Schmidt H (2011) Migration and annihilation of non-equilibrium point defects in sputter deposited nanocrystalline alpha-Fe films. Acta Mater 59:5568–5573

    Article  Google Scholar 

  26. Chakravarty S, Schmidt H, Tietze U, Lott D, Lalla NP, Gupta A (2009) Self-diffusion and defect annihilation in nanocrystalline Fe films probed by neutron reflectometry. Phys Rev B 80:014111

    Article  Google Scholar 

  27. Chakravarty S, Hüger E, Schmidt H, Horisberger M, Stahn J, Lalla NP (2009) Determination of volume self-diffusivities in ultrafine-grained metals using neutron reflectometry. Scripta Mater 61:1117–1120

    Article  Google Scholar 

  28. Crank J (1975) The Mathematics of Diffusion. Oxford University Press, Oxford

    Google Scholar 

  29. Rein G, Mehrer H, Maier K (1978) Diffusion of 197Pt and 199Au in platinum at low temperatures. Phys Stat Sol 45:253–261

    Article  Google Scholar 

  30. Gruber W, Strauß F, Schmidt H (2015) A SIMS study on self-diffusion in thin nano-crystalline platinum films. Defect Diffus Forum 363:219–224

    Article  Google Scholar 

  31. Lide DR (2012) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  32. Merker J, Lupton D, Töpfer M, Knake H (2001) High temperature mechanical properties of the platinum group metals. Platin Met Rev 45(2):74–82

    Google Scholar 

  33. Lide DR (2009) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  34. Kraftmakher Y (1998) Equilibrium vacancies and thermophysical properties of metals. Phys Rep 299:79–188

    Article  Google Scholar 

  35. Seeger A (1973) Investigation of point defects in equilibrium concentrations with particular reference to positron annihilation techniques. J Phys F 3:248–294

    Article  Google Scholar 

  36. Gruber W, Chakravarty S, Baehtz C, Leitenberger W, Bruns M, Kobler A, Kübel C, Schmidt H (2011) Strain relaxation and vacancy creation in thin platinum films. Phys Rev Lett 107(26):265501

    Article  Google Scholar 

  37. Gruber W, Baehtz C, Horisberger M, Ratschinski I, Schmidt H (2016) Micro structure and strain relaxation in thin nanocrystalline platinum films produced via different sputtering techniques. Appl Surf Sci 368:341–347

    Article  Google Scholar 

  38. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon, Oxford

    Google Scholar 

  39. Thouless MD, Gupta J, Harper JME (1993) Stress development and relaxation in copper films during thermal cycling. J Mater Res 8(8):1845–1852

    Article  Google Scholar 

  40. Zhang L, Gao H (2002) Coupled grain boundary and surface diffusion I a polycrystalline thin film constrained by substrate. Z. Metallkunde 93:417–427

    Article  Google Scholar 

  41. Thouless MD (1993) Effect of surface diffusion on the creep of thin films and sintered arrays of particles. Acta Metall Mater 41(4):1057–1064

    Article  Google Scholar 

  42. Svoboda J, Fischer FD (2009) Vacancy-driven stress relaxation in layers. Acta Mater 57:4649–4657

    Article  Google Scholar 

  43. Chakravarty S, Chirayath VA, Gangavarapu A, Parida P, Dasgupta A (2015) Residual stress relaxation mechanism at low homologous temperature in nanocrystalline iron thin film deposited on Si (100) substrate. J Phys D 48(30):305303

    Article  Google Scholar 

  44. Schwoebel RL (1967) Surface vacancies on metal crystals. J Appl Phys 38(8):3154–3158

    Article  Google Scholar 

  45. Uchida Y, Lehmpfuhl G (1991) Estimation of ad-vacancy formation energy on the Pt(111) surface by using reflection electron microscopy. Surf Sci 243:193–198

    Article  Google Scholar 

  46. Hyun S, Vinci RP, Fahey KP, Clemens BM (2003) Effect of grain structure on the onset of diffusion-controlled stress relaxation in Pt films. Appl Phys Lett 83(14):2769–2771

    Article  Google Scholar 

  47. Horváth J, Birringer R, Gleiter H (1987) Diffusion in nanocrystalline material. Solid State Commun 62(2):319–322

    Article  Google Scholar 

  48. Wegner M, Leuthold J, Peterlechner M, Setman D, Zehetbauer M, Pippan R, Divinski SV, Wilde G (2013) Percolating porosity in ultrafine grained copper processed by high pressure torsion. J Appl Phys 114(18):183509

    Article  Google Scholar 

  49. Wegner M, Leuthold J, Peterlechner M, Song X, Divinski SV, Wilde G (2014) Grain boundary and triple junction diffusion in nanocrystalline copper. J Appl Phys 116:093514

    Article  Google Scholar 

  50. Wang L, Teng J, Liu P, Hirata A, Ma E, Zhang Z, Chen M, Han X (2014) Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun 5:4402

    Google Scholar 

  51. Brückner W, Weihnacht V (1999) Stress relaxation in CuNi thin films. J Appl Phys 85(7):3602–3608

    Article  Google Scholar 

  52. Kobler A, Brandl C, Hahn H, Kübel C (2016) In situ observation of deformation processes in nanocrystalline face-centered cubic metals, Beilstein. J Nanotechnol 7:572–580

    Google Scholar 

  53. Gruber W, Rahn J, Baehtz C, Horisberger M, Geckle U, Schmidt H (2014) Influence of a passivation layer on strain relaxation and lattice disorder in thin nano-crystalline Pt films during in situ annealing. Thin Solid Films 565:79–83

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on measurements carried out at the Rossendorf beam line (BM20) at ESRF, Grenoble, and the Swiss spallation neutron source SINQ, PSI, Villigen. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and the Pauls Scherrer Institute for neutron facilities. We thank J. Uhlendorf and F. Strauß for help with sample preparation and L. Dörrer for help with SIMS measurements. This research has been supported by the German Research Foundation (DFG) under the contract Schm1569/13-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Gruber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruber, W., Baehtz, C., Geue, T. et al. Isothermal differential dilatometry based on X-ray analysis applied to stress relaxation in thin ion-beam-sputtered Pt films. J Mater Sci 52, 1647–1660 (2017). https://doi.org/10.1007/s10853-016-0458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0458-7

Keywords

Navigation