Skip to main content
Log in

Microwave-assisted synthesis and surface decoration of LiFePO4 hexagonal nanoplates for lithium-ion batteries with excellent electrochemical performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microwave-assisted synthesis of electrode materials for lithium-ion batteries has drawn extensive attention owing to the unique microwave dielectric heating. In this work, olivine LiFePO4 hexagonal nanoplates, with a short b-axis, were successfully synthesized using a single-mode microwave-assisted hydrothermal system at 160 °C just in 20 min. Microwave irradiation can lower the synthesis temperature and shorten the synthesis time dramatically. The growth process of LiFePO4 hexagonal nanoplates with microwave irradiation time was investigated. The role of electromagnetic field in the formation and the quality of the resulting LiFePO4 were explored. In order to enhance the electrochemical properties of LiFePO4 hexagonal nanoplates, LiFePO4/C and LiFePO4/rGO have been obtained through surface decoration of LiFePO4 nanoplates by ex situ carbon coating and in situ reduced graphene oxide (rGO) coating. The electrochemical analysis demonstrated that LiFePO4/rGO had more excellent electrochemical performance; the initial discharge capacity at 0.1 C was up to 167.2 mAh g−1 which was very close to the theoretical value (170 mAh g−1). This is because the in situ coating can achieve a complete coating of the surface and rGO has a higher electrical conductivity. The rGO layer can boost the transport speed of the lithium ions and electrons, and reduce the charge transfer resistance of Li ion insertion/extraction. Furthermore, the unique structure of the nanoplates with a short b-axis is favored to shorten the migration of Li+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  Google Scholar 

  2. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J Electrochem Soc 144:2581–2586

    Article  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  4. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 3:A224–A229

    Article  Google Scholar 

  5. Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G (2011) Calculations of Li-ion diffusion in olivine phosphates. Chem Mater 23:4032–4037

    Article  Google Scholar 

  6. Huang XJ, Yan SJ, Zhao HY, Zhang L, Guo R, Chang CK, Kong XY, Han HB (2010) Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater Charact 61:720–725

    Article  Google Scholar 

  7. Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M=Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761

    Article  Google Scholar 

  8. Malik R, Burch D, Bazantand M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10:4123–4127

    Article  Google Scholar 

  9. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun 12:10–13

    Article  Google Scholar 

  10. Zhang Y, Du PP, Wang LZ, Zhang AQ, Song YH, Li XF, Lv Y (2011) Synthesis and electrochemical properties of gyroscope-like lithium iron phosphate/multiwalled carbon nanotubes composites by microwave-assisted sol–gel method. Synth Met 161:548–551

    Article  Google Scholar 

  11. Niu B, Qi EL, Wang JQ (2011) A simple and facile preparation of LiFePO4 by a one-step microwave hydrothermal method. J Inorg Organomet Polym Mater 21:906–912

    Article  Google Scholar 

  12. Wang SP, Yang HX, Feng LJ, Sun SM, Guo JX, Yang YZ, Wei HY (2013) A simple and inexpensive synthesis route for LiFePO4/C nanoparticles. J Power Sources 233:43–46

    Article  Google Scholar 

  13. Ma ZP, Shao GJ, Fan YQ, Wang GL, Song JJ, Liu TT (2014) Tunable morphology synthesis of LiFePO4 nanoparticles as cathode. ACS Appl Mater Interface 6:9236–9244

    Article  Google Scholar 

  14. Zeng GB, Caputo R, Carriazo D, Luo L, Niederberger M (2013) Tailoring two polymorphs of LiFePO4 by efficient microwave-assisted synthesis: a combined experimental and theoretical study. Chem Mater 25:3399–3407

    Article  Google Scholar 

  15. Zhou XF, Wang F, Zhu YM, Liu ZP (2011) Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 21:3353–3358

    Article  Google Scholar 

  16. Tang YF, Huang FQ, Bi H, Liu ZQ, Wan DY (2012) Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode. J Power Sources 203:130–134

    Article  Google Scholar 

  17. Kang FY, Mi J, Li BH (2011) Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries. New Carbon Mater 26:161–170

    Article  Google Scholar 

  18. Shi Y, Chou SL, Wang JZ, Wexler D, Li HJ, Liu H, Wu YP (2012) Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. J Mater Chem 22:16465–16470

    Article  Google Scholar 

  19. Gao HY, Jiao LF, Peng WX, Liu G, Yang JQ, Zhao QQ, Qi Z, Si YC, Wang YJ, Yuan HT (2011) Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site. Electrochim Acta 56:9961–9967

    Article  Google Scholar 

  20. Yang JM, Bai Y, Qing CB, Zhang WF (2011) Electrochemical performances of Co-doped LiFePO4/C obtained by hydrothermal method. J Alloy Compd 509:9010–9014

    Article  Google Scholar 

  21. Wang GX, Shen XP, Yao J (2009) One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. J Power Sources 189:543–546

    Article  Google Scholar 

  22. Sabina B, Libero D, Marina M (2009) Fast sol–gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application. J Power Sources 194:1094–1098

    Article  Google Scholar 

  23. Kiyoshi K, Shohei K, Kaoru D (2008) Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries. J Mater Sci 43:2138–2142. doi:10.1007/s10853-007-2011-1

    Article  Google Scholar 

  24. Li ZH, Zhang DM, Yang FX (2009) Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J Mater Sci 44:2435–2443. doi:10.1007/s10853-009-3316-z

    Article  Google Scholar 

  25. Xiang HF, Chen CH, Zhang DW, Wu JS, Jin Y, Wang HH (2011) Hydrothermal synthesis of ultra-thin LiFePO4 platelets for Li-ion batteries. J Mater Sci 46:4906–4912. doi:10.1007/s10853-011-5403-1

    Article  Google Scholar 

  26. Nagaraju DH, Mirjana K, Suresh GS (2015) LiFePO4 wrapped reduced graphene oxide for high performance Li-ion battery electrode. J Mater Sci 50:4244–4249. doi:10.1007/s10853-015-8976-2

    Article  Google Scholar 

  27. Chang YC, Hung IM, Peng CT (2014) Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method. J Mater Sci 49:6907–6916. doi:10.1007/s10853-014-8395-9

    Article  Google Scholar 

  28. Zhou XW, Zhan D, Cong CJ, Guo GH, Wang LN (2005) Synthesis and electrochemical properties of LiFePO4/C cathode material. J Mater Sci 40:2577–2578. doi:10.1007/s10008-011-1426-4

    Article  Google Scholar 

  29. Xiao PF, Lai MO, Lu L (2013) Hollow microspherical LiFePO4/C synthesized from a novel multidentate phosphonate complexing agent. RSC Adv 3:5127–5130

    Article  Google Scholar 

  30. Qiu YJ, Zuo XB, Geng YH, Yu J (2014) High-capacity cathode for lithium-ion battery from LiFePO4/(C+Fe2P) composite nanofibers by electrospinning. J Mater Sci 49:504–509. doi:10.1007/s10853-013-7727-5

    Article  Google Scholar 

  31. Zhang L, Xiang HF, Yang WS, Zhu XF, Wang HH (2012) Synthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method. J Mater Sci 47:3076–3081. doi:10.1007/s10853-011-6139-7

    Article  Google Scholar 

  32. Li YD, Zhao SX, Nan CW, Li BH (2011) Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery. J Alloy Compd 509:957–960

    Article  Google Scholar 

  33. Deng HG, Jin SL, Zhan L, Qiao WM, Ling LC (2012) Nest-like LiFePO4/C architectures for high performance lithium ion batteries. Electrochim Acta 78:633–637

    Article  Google Scholar 

  34. Deng HG, Jin SL, Zhan L, Wang YL, Qiao WM, Ling LC (2012) Synthesis of cage-like LiFePO4/C microspheres for high performance lithium ion batteries. J Power Sources 220:342–347

    Article  Google Scholar 

  35. Zhou N, Wang HY, Chaker EU, Zhang M, Liu SQ, Liu YN, Cao GZ (2013) Additive-free solvothermal synthesis and Li-ion intercalation properties of dumbbell-shaped LiFePO4/C mesocrystals. J Power Sources 239:103–110

    Article  Google Scholar 

  36. Zhou N, Uchaker E, Liu N, Wang HY, Zhang M, Liu SQ, Liu YN, Wu XW, Cao GZ, Li HY (2013) Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its electrochemical performance. RSC Adv 3:19366–19374

    Article  Google Scholar 

  37. Wang Q, Deng SX, Wang H, Xie M, Liu JB, Yan H (2013) Hydrothermal synthesis of hierarchical LiFePO4 microspheres for lithium ion battery. J Alloy Compd 553:69–74

    Article  Google Scholar 

  38. Cho MY, Kim KB, Lee JW, Kim H, Kim H, Kang K, Roh KC (2013) Defect-free solvothermally assisted synthesis of microspherical mesoporous LiFePO4/C. RSC Adv 3:3421–3427

    Article  Google Scholar 

  39. Nina IK, Patricia JO, Benjamin RM, Thomas EM, Sergey AC, Eugenia VB, Alexandr DG (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    Article  Google Scholar 

  40. Wang L, Wang HB, Liu ZH, Xiao C, Dong SM, Han PX, Zhang ZY, Zhang XY, Bi CF, Cui GL (2010) A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ion 181:1685–1689

    Article  Google Scholar 

  41. Burba CM, Frech R (2004) Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1). J Electrochem Soc 151:A1032–A1038

    Article  Google Scholar 

  42. Wu J, Dathar GKP, Sun CW, Theivanayagam MG, Applestone D, Dylla AG, Manthiram A, Henkelman G, Goodenough JB, Stevenson KJ (2013) In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge. Nanotechnology 24:1–9

    Google Scholar 

  43. Wang GX, Shen XP, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053

    Article  Google Scholar 

  44. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen SBT, Ruof RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  45. Doeff MM, Hu YQ, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State 6(10):A207–A209

    Article  Google Scholar 

  46. Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kotz R (2001) Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396:36–43

    Article  Google Scholar 

  47. Tuinstra F, Koenig JL (1970) Raman Spectrum of graphite. J Chem Phys 53:1126–1130

    Article  Google Scholar 

  48. Xu HR, Gao L (2002) New evidence of a dissolution–precipitation mechanism in hydrothermal synthesis of barium titanate powders. Mater Lett 57:490–494

    Article  Google Scholar 

  49. Qin X, Wang XH, Xiang HM, Xie J, Li JJ, Zhou YC (2010) Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J Phys Chem C 114:16806–16812

    Article  Google Scholar 

  50. Qian JF, Zhou M, Cao YL, Ai XP, Yang HX (2010) Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. J Phys Chem C 114:3477–3482

    Article  Google Scholar 

  51. Li J, Qu Q, Zhang LF, Zhang L, Zheng HH (2013) A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings. J Alloy Compd 579:377–383

    Article  Google Scholar 

  52. Ni JF, Zhou HH, Chen JT, Zhang XX (2005) LiFePO4 doped with ions prepared by co-precipitation method. Mater Lett 59:2361–2365

    Article  Google Scholar 

  53. Murugan AV, Muraliganth T, Manthiram A (2009) One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M=Mn, Fe, and Co) cathodes. J Electrochem Soc 156:A79–A83

    Article  Google Scholar 

  54. Su FY, He YB, Li BH, Chen XC, You CH, Lv WW, Yang QH, Kang FY (2012) Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1:429–439

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese National Science Foundation (51172175, 51072147) and the Hubei Science & Technology Plan (2012FFB05107, 2013BKB006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Zhou, J., Liu, G. et al. Microwave-assisted synthesis and surface decoration of LiFePO4 hexagonal nanoplates for lithium-ion batteries with excellent electrochemical performance. J Mater Sci 52, 1590–1602 (2017). https://doi.org/10.1007/s10853-016-0453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0453-z

Keywords

Navigation