Skip to main content

Advertisement

Log in

X-dependence of energy band structures and thermoelectricity of CeRu4X12 (X = P, As, Sb)

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electronic structures of the filled skutterudites CeRu4X12 (X = P, As, Sb) are calculated using the first-principles density functional theory to understand the region close to Fermi energy level (EF). The effects of the localized electrons present in the sample materials are treated by including the Hubbard’s ‘U’ term in the calculation. The study of the energy band structures suggests the semiconducting nature of CeRu4P12 and CeRu4As12 with the presence of an indirect energy of 0.227 and 0.146 eV, respectively. The addition of Sb atom diminishes the opening of the hybridized energy band-gap above the EF, giving the metallic nature for CeRu4Sb12. The analysis of the thermal transport properties suggests the high value of Seebeck coefficient with large thermopower at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Shirotani I, Uchiumi T, Ohno K, Sekine C (1997) Superconductivity of filled skutterudites LaRu4As12 and PrRu4As12. Phys Rev B 56:7866–7869

    Article  Google Scholar 

  2. Bauer ED, Slebarski A, Frederick NA, Yuhasz WM, Maple MB, Cao D, Bridges F, Giester G, Rogl P (2004) Investigation of ferromagnetic filled skutterudite compounds EuT4Sb12 (T = Fe, Ru, Os). J Phys Condens Matter 16:5095–5107

    Article  Google Scholar 

  3. Nordstrom L, Singh DJ (1996) Electronic structure of Ce- filled skutterudites. Phys Rev B 53:1103–1108

    Article  Google Scholar 

  4. Takeda N, Ishikawa M (1999) Anomalous magnetic properties of CeRu4Sb12. Phys B 259–26:92–93

    Article  Google Scholar 

  5. Takegahara K, Harima H, Kaneta Y, Yanase A (1993) Electronic band structures of Ce3Pt3Sb4 and Ce3Pt3Bi4. J Phys Soci Jpn 62:2103–2111

    Article  Google Scholar 

  6. Sales BC (2003) Filled skutterudites. In: Gschneidner KA (ed) Handbook of phys and chem rare earths, vol 33. Elsevier, New York, p 1

    Google Scholar 

  7. Matsunami M, Okamura H, Nanba T, Sugawara H, Sato H (2004) Optical properties of the filled skutterudites CeT4Sb12 (T = Fe, Ru, Os). J Magn Magn Mater 272–276:41–42

    Article  Google Scholar 

  8. Benalia S, Hachemaoui M, Rached D, Khenata R, Bettahar N, Benyahia M (2009) FP-LMTO calculations of elastic and electronic properties of the filled skutterudite CeRu4P12. J Phys Chem Solids 70:622–626

    Article  Google Scholar 

  9. Matsunami M, Okamura H, Senoo K, Nagano S, Sekine C, Shirotani I, Sugawara H, Sato H, Nanba T (2008) Optical conductivity and electronic structures in Ce-filled skutterudites. J Phys Soc Jpn 77:315–317

    Article  Google Scholar 

  10. Baumbach RE, Ho PC, Sayles TA, Maple MB, Wawryk R, Cichorek T, Pietraszko A, Henkie Z (2008) Non-Fermi liquid behavior in the filled skutterudite compound CeRu4As12. J Phys: Condens Matter 20:075110–075117

    Google Scholar 

  11. Berrahal M, Ameri M, Al-Douri Y, Hashim U, Varshney D, Ameri I, Boubchir M, Abderrahim B (2015) Ab initio calculations of structural, elastic, electronic and thermodynamic properties of the cerium filled skutterudite CeRu4P12 under the effect of pressure. Mater Sci-Pol 33:699–708

    Article  Google Scholar 

  12. Sekine C, Kawata T, Kawamura Y (2013) Thermoelectric properties of the Kondo semiconductor CeRu4As12 prepared under high pressure. J Korean Phys Soc 63:359–362

    Article  Google Scholar 

  13. Kanai K, Takeda N, Nozawa S, Yokoya T, Ishikawa M, Shin S (2002) Electronic structure of the filled skutterudite compound CeRu4Sb12. Phys Rev B 65:041105.1–041105.4

    Google Scholar 

  14. Kobayashi M, Saha SR, Sugawara H, Namiki T, Aoki Y, Sato H (2003) Pressure effect on the transport properties in heavy-fermion semimetal CeRu4Sb12. Phys B 329–333:605–606

    Article  Google Scholar 

  15. Nakanishi Y, Kumagai T, Oikawa M, Tanizawa T, Yoshizawa M, Sugawara H, Sato H (2007) Elastic properties of the non-Fermi-liquid metal CeRu4Sb12 and dense Kondo semiconductor CeOs4Sb12. Phys Rev B 75:134411–134418

    Article  Google Scholar 

  16. Sekine C, Uchiumi T, Shirotani I, Yagi T (1997) Superconductivity of LaRu4X12 (X = P, As and Sb) with skutterudite structure. Phys Rev Lett 79:3218–3221

    Article  Google Scholar 

  17. Sekine C, Akita K, Yanase N, Shirotani I, Inagawa I, Lee C (2001) Thermoelectric properties of CeRu4P12 and CeOs4P12with filled skutterudite-type structure. Jpn J Appl Phys 40:3326. doi:10.1143/JJAP.40.3326

    Article  Google Scholar 

  18. Uher C, Yang J, Hu S, Morelli DT, Meisner GP (1999) Transport properties of pure and doped MNiSn (M = Zr, Hf). Phys Rev B 59:8615. doi:10.1103/PhysRevB.59.8615

    Article  Google Scholar 

  19. Nolas GS, Cohn JL, Slack GA (1998) Effect of partial void filling on the lattice thermal conductivity of skutterudites. Phys Rev B 58:164–170

    Article  Google Scholar 

  20. Nouneh K, Reshak Ali H, Auluck S, Kityk IV, Viennois R, Benet S, Charar S (2007) Band energy and thermoelectricity of filled skutterudites LaFe4Sb12 and CeFe4Sb12. J Alloys Compd 437:39–46

    Article  Google Scholar 

  21. Feldman JL, Singh DJ, Kendziora C, Mandrus D, Sales BC (2003) Lattice dynamics of filled skutterudites: La(Fe, Co)4Sb12. Phys Rev B 68:094301–094311

    Article  Google Scholar 

  22. Shankar A, Rai DP, Sandeep, Joshi H, Khenata R, Ghimire MP, Thapa RK, Mandal PK (2016) Energy band structure, elastic and optical constants of the filled skutterudite CeRu4As12. Mater Sci Semicond Process 46:10–16

    Article  Google Scholar 

  23. Shankar A, Rai DP, Sandeep, Khenata R, Thapa RK, Mandal PK (2016) Electronic structure and thermoelectricity of filled skutterudite CeRu4Sb12. J Alloys Compd 672:98–103

    Article  Google Scholar 

  24. Rowe DM (ed) (2006) Thermoelectrics handbook: macro to nano. CRC Press

    Google Scholar 

  25. Allen PB (1996) In: Chelikowsky JR, Louie SG (eds) Quantum theory of real materials. Kluwer, Boston, p 219

    Chapter  Google Scholar 

  26. Blaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (2014) An augmented plane wave plus local orbitals program for calculating crystal properties. Tech Universitat, Wien

    Google Scholar 

  27. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and mott insulators: hubbard U instead of stoner I. Phys Rev B 44:943–954

    Article  Google Scholar 

  28. Sandeep, Rai DP, Shankar A, Ghimire MP, Khenata R, Thapa RK (2015) Study of electronic and magnetic properties in 4f electron based cubic EuAlO3: a first principles calculation. Phys Scr 90:065803–065808

    Article  Google Scholar 

  29. Shankar A, Rai DP, Sandeep, Thapa RK (2012) Structural, electronic, magnetic and optical properties of neodymium chalcogenides using LSDA + U method. J Semicond 33:082001–082006

    Article  Google Scholar 

  30. Adelstein N, Mun BS, Ray HL, Ross PN Jr, Neaton JB, De Jonghe LC (2012) Structure and electronic properties of cerium orthophosphate: theory and experiment. Phys Rev B 86:205104–205107

    Article  Google Scholar 

  31. Rondinelli JM, Caffrey NM, Sanvito S, Spaldin NA (2008) Electronic properties of bulk and thin film SrRuO3: search for the metal-insulator transition. Phys Rev B 78:155107–155115

    Article  Google Scholar 

  32. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30:244–247

    Article  Google Scholar 

  33. Takeda K, Hayashi J, Hoshi N, Sekine C, Shirotani I (2008) X-ray study with synchrotron radiation for filled skutterudite CeRu4As12 at ambient pressure and at high pressures. J Phys Soc Jpn 77:324–326

    Article  Google Scholar 

  34. Hao A, Yang X, Wang X, Zhu Y, Liu XJ (2010) First-principles investigations on electronic, elastic and optical properties of XC (X = Si, Ge, and Sn) under high pressure. J Appl Phys 108:063531–063537

    Article  Google Scholar 

  35. Shankar A, Rai DP, Sandeep, Khenata R, Ghimire MP, Thapa RK (2016) FP-LAPW study of energy bands and optical properties of the filled skutterudite CeRu4As12 with spin–orbit coupling. J Comput Electron 15:721–728. doi:10.1007/s10825-016-0836-z

    Article  Google Scholar 

  36. Shankar A, Rai DP, Chettri S, Khenata R, Thapa RK (2016) FP-LAPW calculations of the elastic, electronic and thermoelectric properties of the filled skutterudite CeRu4Sb12. J Solid State Chem 240:126–132

    Article  Google Scholar 

  37. Hachemaoui M, Khenata R, Bouhemadou A, Reshak AH, Rached D, Semari F (2009) FP-APW + lo study of the elastic, electronic and optical properties of the filled skutterudites CeFe4As12 and CeFe4Sb12. Curr Opin Solid State Mater Sci 13:105–111

    Article  Google Scholar 

  38. Wang J, Yip S (1993) Crystal instabilities at finite strain. Phys Rev Lett 71:4182–4185

    Article  Google Scholar 

  39. Bauer ED, Slebarski A, Dickey RP, Freeman EJ, Sirvent C, Zapf VS, Dilley NR, Maple MB (2001) Electronic and magnetic investigation of the filled skutterudite compound CeRu4Sb12. J Phys: Condens Matter 13:5183. doi:10.1088/0953-8984/13/22/312

    Google Scholar 

  40. Hachemaoui M, Khenata R, Bouhemadou A, Bin-Omran S, Reshak AH, Rached D, Semari F (2010) Prediction study of the structural and elastic properties for the cubic skutterudites LaFe4A12 (A = P, As and Sb) under pressure effect. Solid State Commun 150:1869–1873

    Article  Google Scholar 

  41. Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  Google Scholar 

  42. Singh DJ, Mazin II (1997) Calculated thermoelectric properties of La-filled skutterudites. Phys Rev B 56:1650–1653

    Article  Google Scholar 

  43. Takegahara K, Harima H (2003) FLAPW electronic band structure of the filled skutterudite ThFe4P12. Phys B 329–333:464–466

    Article  Google Scholar 

  44. Harima H, Takegahara K (2003) X- dependence of electronic band structures for LaFe4X12 (X = P, As, Sb). Phys B 328:26–28

    Article  Google Scholar 

  45. Harima H (1998) FLAPW band structure calculation and fermi surface for LaFe4P12. J Magn Magn Mater 117–181:321–322

    Article  Google Scholar 

  46. Magishia K, Sugawara H, Saito T, Koyama K, Sato H (2006) NMR studies of Ce-based filled skutterudites CeFe4P12 and CeRu4P12. Phys B 378–380:175–176

    Article  Google Scholar 

  47. Shirotani I, Uchiumi T, Sekine C, Hori M, Kimura S, Hamaya N (1999) Electrical and magnetic properties of La1−x Ce x Ru4P12 and CeOs4P12 with the skutterudite structure. J Solid State Chem 142:146–151

    Article  Google Scholar 

  48. Fujiwara K, Ishihara K, Miyoshi K, Takeuchi J, Sekine C, Sirotani I (2000) NMR study of spin fluctuations in CeRu4P12. Phys B 281–282:296–297

    Article  Google Scholar 

  49. Nanba T, Hayashi M, Shirotani I, Sekine C (1999) Optical response of PrRu4P12 due to metal insulator transition. Phys B 259–261:853–854

    Article  Google Scholar 

  50. Dordevic SV, Basov DN, Dilley NR, Bauer ED, Maple MB (2001) Hybridization gap in heavy fermion compounds. Phys Rev Lett 86:684–687

    Article  Google Scholar 

  51. Meisner GP, Torikachvili MS, Yang KN, Maple MB, Guertin RP (1985) UFe4P12 and CeFe4P12: nonmetallic isotypes of superconducting LaFe4P12. J Appl Phys 57:3073. doi:10.1063/1.335217

    Article  Google Scholar 

  52. Sato H, Abe Y, Okada H, Matsuda TD, Abe K, Sugawara H, Aoki Y (2000) Anomalous transport properties of RFe4P12 (R = La, Ce, Pr, and Nd). Phys Rev B 62:15125–15130

    Article  Google Scholar 

  53. Takeda N, Ishikawa Y (2000) Superconducting and magnetic properties of filled skutterudite compounds RERu4Sb12 (RE = La, Ce, Pr, Nd and Eu). J Phys Soc Jpn 69:868–873

    Article  Google Scholar 

  54. Krishnamurthy VV, Lang JC, Haskel D, Keavney DJ, Srajer G, Robertson JL, Sales BC, Mandrus DG, Singh DJ, Bilc DI (2007) Ferrimagnetism in EuFe4Sb12 due to the Interplay of f-electron moments and a nearly ferromagnetic host. Phys Rev Lett 98:126403–126404

    Article  Google Scholar 

  55. Viennois R, Charar S, Ravot D, Haen P, Mauger A, Bentien A, Paschen S, Steglich F (2005) Spin fluctuations in the skutterudite compound LaFe4Sb12. Eur Phys J B 46:257–267

    Article  Google Scholar 

  56. Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71

    Article  Google Scholar 

  57. Abe K, Sato H, Matsuda TD, Namiki T, Sugawara H, Aoki Y (2002) Transport properties in the filled-skutterudite compounds RERu4Sb12 (RE—La, Ce, Pr and Nd); an exotic heavy fermion semimetal CeRu4Sb12. J Phys: Condens Matter 14:11757. doi:10.1088/0953-8984/14/45/317

    Google Scholar 

  58. Caillat T, Borshchevsky A, Fleurial JP (1996) Properties of single crystalline semiconducting CoSb3. J Appl Phys 80:4442. doi:10.1063/1.363405

    Article  Google Scholar 

  59. Yang J, Qiu P, Liu R, Xi L, Zheng S, Zhang W, Chen L, Singh DJ, Yang J (2011) Trends in electrical transport of p-type skutterudites RFe4Sb12 (R = Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory. Phys Rev B 84:235205–235210

    Article  Google Scholar 

  60. Sales BC, Mandrus D, Chakoumakos BC, Keppens V, Thompson JR (1997) Electron crystals and phonon glasses. Phys Rev B 56:15081–15089

    Article  Google Scholar 

Download references

Acknowledgements

RKT would like to acknowledge a project Grant from SERB (DST), New Delhi, India under Project Sanction No.EMR/2015/001407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, A., Mandal, P.K. & Thapa, R.K. X-dependence of energy band structures and thermoelectricity of CeRu4X12 (X = P, As, Sb). J Mater Sci 52, 1511–1522 (2017). https://doi.org/10.1007/s10853-016-0446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0446-y

Keywords

Navigation