Skip to main content
Log in

Influence of grain size on the electrochemical behavior of pure copper

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Despite numerous research works a thorough understanding on how grain size influences the electrochemical behavior of metals is still lacking due to the inability to decouple grain size effects from other microstructural characteristics. In this work, the combination of potentiodynamic polarization measurements and the gold-nanoplating technique was used on high purity copper to further explore this relationship. The high purity copper was thermomechanically processed in such a way that three samples were produced with markedly different average grain sizes, namely 1.4, 48 and 191 µm. All other parameters influencing the electrochemical behavior, such as internal stresses and texture were kept constant; microstructural characterization was performed by electron backscatter diffraction. In 0.1 M HCl, the anodic polarization curves demonstrate that for the smaller the grain size a lower corrosion potential and higher corrosion current density is observed. The gold-nanoplating experiments show that the material with the smallest grain size is corroding more uniformly than the samples with the larger grain sizes. In the sample with the medium grain size, the higher electrochemical activity of the grain boundaries is demonstrated. In the largest grain size sample, both the grain boundaries as well as some of the grain interiors are covered with gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ralston KD, Birbilis N (2010) Effect of grain size on corrosion: a review. Corrosion 66:075005-1–075005-13

    Article  Google Scholar 

  2. Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scr Mater 63:1201–1204

    Article  Google Scholar 

  3. Hellmig RJ, Janecek M, Hadzima B et al (2008) A portrait of copper processed by equal channel angular pressing. Mater Trans 49:31–37

    Article  Google Scholar 

  4. Yu B, Woo P, Erb U (2007) Corrosion behaviour of nanocrystalline copper foil in sodium hydroxide solution. Scr Mater 56:353–356

    Article  Google Scholar 

  5. Luo W, Qian C, Wu XJ, Yan M (2007) Electrochemical corrosion behavior of nanocrystalline copper bulk. Mater Sci Eng 452:524–528

    Article  Google Scholar 

  6. Vinogradov A, Mimaki T, Hashimoto S, Valiev R (1999) On the corrosion behaviour of ultra-fine grain copper. Scr Mater 41:319–326

    Article  Google Scholar 

  7. Barbucci A, Farne G, Matteazzi P, Riccieri R, Cerisola G (1999) Corrosion behaviour of nanocrystalline Cu90Ni10 alloy in neutral solution containing chlorides. Corros Sci 41:463–475

    Article  Google Scholar 

  8. Wang YM, Chen MW, Zhou FH, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915

    Article  Google Scholar 

  9. Wang YM, Chen MW, Sheng HW, Ma E (2002) Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. J Mater Res 17:3004–3007

    Article  Google Scholar 

  10. Nikfahm A, Danaee I, Ashrafi A, Toroghinejad MR (2013) Effect of grain size changes on corrosion behavior of copper produced by accumulative roll bonding process. Mater Res 16:1379–1386

    Article  Google Scholar 

  11. Tao S, Li DY (2006) Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition. Nanotechnology 17:65–78

    Article  Google Scholar 

  12. Yu JK, Han EH, Lu L, Wei XJ, Leung M (2005) Corrosion behaviors of nanocrystalline and conventional polycrystalline copper. J Mater Sci 40:1019–1022. doi:10.1007/s10853-005-6524-1

    Article  Google Scholar 

  13. Song GL, Atrens A, Dargusch M (1999) Influence of microstructure on the corrosion of diecast AZ91D. Corros Sci 41:249–273

    Article  Google Scholar 

  14. Ambat R, Aung NN, Zhou W (2000) Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corros Sci 42:1433–1455

    Article  Google Scholar 

  15. Hoog CO, Birbilis N, Estrin Y (2008) Corrosion of pure Mg as a function of grain size and processing route. Adv Eng Mater 10:579–582

    Article  Google Scholar 

  16. Martinez-Lombardia E, Lapeire L, De Graeve I, Verbeken K, Kestens LAI, Terryn H (2015) Study of the influence of the microstructure on the corrosion properties of pure copper. Mater Corros. doi:10.1002/maco.201508719

    Google Scholar 

  17. Gaggiano R, Lombardia EM, De Graeve I et al (2012) Gold nanoplating as a new method for the quantification of the electrochemical activity of grain boundaries in polycrystalline metals. Electrochem Commun 24:97–99

    Article  Google Scholar 

  18. Lapeire L, Lombardia EM, Verbeken K, De Graeve I, Terryn H, Kestens LAI (2014) Structural dependence of gold deposition by nanoplating in polycrystalline copper. J Mater Sci 49:3909–3916. doi:10.1007/s10853-013-7939-8

    Article  Google Scholar 

  19. Garcia AL, Tikare V, Holm EA (2008) Three-dimensional simulation of grain growth in a thermal gradient with non-uniform grain boundary mobility. Scr Mater 59:661–664

    Article  Google Scholar 

  20. Liu H, Li N, Bi S, Li D (2007) Gold immersion deposition on electroless nickel substrates—deposition process and influence factor analysis. J Electrochem Soc 154:D662–D668

    Article  Google Scholar 

  21. Lapeire L, Sidor J, Verleysen P et al (2015) Texture comparison between room temperature rolled and cryogenically rolled pure copper. Acta Mater 95:224–235

    Article  Google Scholar 

  22. Konkova TN, Mironov SY, Korznikov AV, Myshlyaev MM (2013) Formation of the microstructure in the course of low-temperature annealing of cryogenically deformed copper. Dokl Phys 58:240–243

    Article  Google Scholar 

  23. Konkova T, Mironov S, Korznikov A, Semiatin SL (2010) Microstructural response of pure copper to cryogenic rolling. Acta Mater 58:5262–5273

    Article  Google Scholar 

  24. Verbeken K, Kestens L (2003) Strain-induced selective growth in an ultra low carbon steel after a small rolling reduction. Acta Mater 51:1679–1690

    Article  Google Scholar 

  25. Palumbo G, Aust KT, Lehockey EM, Erb U, Lin P (1998) On a more restrictive geometric criterion for “special” CSL grain boundaries. Scr Mater 38:1685–1690

    Article  Google Scholar 

  26. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

  27. Konkova T, Mironov S, Korznikov A, Semiatin SL (2011) On the room-temperature annealing of cryogenically rolled copper. Mater Sci Eng 528:7432–7443

    Article  Google Scholar 

  28. Dziaszyk S, Payton EJ, Friedel F, Marx V, Eggeler G (2010) On the characterization of recrystallized fraction using electron backscatter diffraction: a direct comparison to local hardness in an IF steel using nanoindentation. Mater Sci Eng 527:7854–7864

    Article  Google Scholar 

  29. Wang SY, Wang JQ (2014) Effect of grain orientation on the corrosion behavior of polycrystalline Alloy 690. Corros Sci 85:183–192

    Article  Google Scholar 

  30. Ashton RF, Hepworth MT (1968) Effect of crystal orientation on anodic polarization and passivity of zinc. Corrosion 24:50–56

    Article  Google Scholar 

  31. Wiame F, Maurice V, Marcus P (2007) Initial stages of oxidation of Cu(111). Surf Sci 601:1193–1204

    Article  Google Scholar 

  32. Zhang DQ, Cai QR, He XM, Ga LX, Zhou GD (2008) Inhibition effect of some amino acids on copper corrosion in HCl solution. Mater Chem Phys 112:353–358

    Article  Google Scholar 

  33. Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52:4067–4081

    Article  Google Scholar 

  34. Martinez-Lombardia E, Lapeire L, Maurice V et al (2014) In situ scanning tunneling microscopy study of the intergranular corrosion of copper. Electrochem Commun 41:1–4

    Article  Google Scholar 

  35. Flewitt PEJ, Wild RK (2001) Grain boundaries: their microstructure and chemistry. Wiley, Chichester

    Google Scholar 

  36. Randle V (2001) The coincidence site lattice and the ‘sigma enigma’. Mater Charact 47:411–416

    Article  Google Scholar 

  37. Martinez-Lombardia E, Gonzalez-Garcia Y, Lapeire L et al (2014) Scanning electrochemical microscopy to study the effect of crystallographic orientation on the electrochemical activity of pure copper. Electrochim Acta 116:89–96

    Article  Google Scholar 

  38. Schreiber A, Schultze JW, Lohrengel MM, Karman F, Kalman E (2006) Grain dependent electrochemical investigations on pure iron in acetate buffer pH 6.0. Electrochim Acta 51:2625–2630

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Research Foundation - Flanders (FWO) for financial support. Aurubis (Belgium) is thanked for the high purity copper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lapeire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapeire, L., Martinez Lombardia, E., De Graeve, I. et al. Influence of grain size on the electrochemical behavior of pure copper. J Mater Sci 52, 1501–1510 (2017). https://doi.org/10.1007/s10853-016-0445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0445-z

Keywords

Navigation