Skip to main content

Advertisement

Log in

Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ni-doped MnCO3 microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N2 adsorption–desorption measurements. The fabricated Ni-doped MnCO3 microspheres exhibited a higher specific capacity (538 F g−1 at a current density of 1 A g−1) than pure MnCO3 (287 F g−1). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g−1, demonstrating a good cycling performance. These results suggested that Ni-doped MnCO3 microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597. doi:10.1039/c3ee44164d

    Article  Google Scholar 

  2. Zhao K, Lyu K, Liu S, Gan Q, He Z, Zhou Z (2016) Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal–organic frameworks for supercapacitor electrodes. J Mater Sci. doi:10.1007/s10853-016-0344-3

    Google Scholar 

  3. Zhu T, Zheng SJ, Chen YG, Luo J, Guo HB, Chen YE (2014) Improvement of hydrothermally synthesized MnO2 electrodes on Ni foams via facile annealing for supercapacitor applications. J Mater Sci 49(17):6118–6126. doi:10.1007/s10853-014-8343-8

    Article  Google Scholar 

  4. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51(12):2901–2912. doi:10.1016/j.enconman.2010.06.031

    Article  Google Scholar 

  5. Liu J, Essner J, Li J (2010) Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem Mater 22(17):5022–5030. doi:10.1021/cm101591p

    Article  Google Scholar 

  6. Wu Q, Chen M, Chen K, Wang S, Wang C, Diao G (2015) Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors. J Mater Sci 51(3):1572–1580. doi:10.1007/s10853-015-9480-4

    Article  Google Scholar 

  7. Li S, Qi L, Lu L, Wang H (2012) Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Adv 2(8):3298. doi:10.1039/c2ra00991a

    Article  Google Scholar 

  8. Hallam PM, Gómez-Mingot M, Kampouris DK, Banks CE (2012) Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors. RSC Adv 2(16):6672. doi:10.1039/c2ra01139e

    Article  Google Scholar 

  9. Li X, Zhou M, Xu H, Wang G, Wang Z (2014) Synthesis and electrochemical performances of a novel two-dimensional nanocomposite: polyaniline-coated laponite nanosheets. J Mater Sci 49(19):6830–6837. doi:10.1007/s10853-014-8385-y

    Article  Google Scholar 

  10. Kumar N, Yu Y-C, Lu YH, Tseng TY (2015) Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J Mater Sci 51(5):2320–2329. doi:10.1007/s10853-015-9540-9

    Article  Google Scholar 

  11. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  12. Yan W, Kim JY, Xing W, Donavan KC, Ayvazian T, Penner RM (2012) Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem Mater 24(12):2382–2390. doi:10.1021/cm3011474

    Article  Google Scholar 

  13. Xia X-H, Tu J-P, Zhang Y-Q, Mai Y-J, Wang X-L, Gu C-D, Zhao X-B (2012) Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv 2:1835–1841. doi:10.1039/c1ra00771h/

    Article  Google Scholar 

  14. Fam DWH, Azoubel S, Liu L, Huang J, Mandler D, Magdassi S, Tok AIY (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxides. J Mater Sci 50(20):6578–6585. doi:10.1007/s10853-015-9199-2

    Article  Google Scholar 

  15. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2010) Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C 114:658–663

    Article  Google Scholar 

  16. Reddy RN, Reddy RG (2003) Sol–gel MnO2 as an electrode material for electrochemical capacitors. J Power Sour 124(1):330–337. doi:10.1016/s0378-7753(03)00600-1

    Article  Google Scholar 

  17. Wang L, Deng D, Salley SO, Ng KYS (2015) Facile synthesis of 3-D composites of MnO2 nanorods and holey graphene oxide for supercapacitors. J Mater Sci 50(19):6313–6320. doi:10.1007/s10853-015-9169-8

    Article  Google Scholar 

  18. Zhang H, Ye Y, Li Z, Chen Y, Deng P, Li Y (2015) Synthesis of Fe2O3–Ni(OH)2/graphene nanocomposite by one-step hydrothermal method for high-performance supercapacitor. J Mater Sci 51(6):2877–2885. doi:10.1007/s10853-015-9596-6

    Article  Google Scholar 

  19. Yu M, Cheng X, Zeng Y, Wang Z, Tong Y, Lu X, Yang S (2016) Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew Chem 55(23):6762–6766. doi:10.1002/anie.201602631

    Article  Google Scholar 

  20. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  Google Scholar 

  21. Devaraj S, Liu HY, Balaya P (2014) MnCO3: a novel electrode material for supercapacitors. J Mater Chem A 2(12):4276. doi:10.1039/c3ta14174h

    Article  Google Scholar 

  22. Zhang N, Ma J, Li Q, Li J, Ng DHL (2015) Shape-controlled synthesis of MnCO3 nanostructures and their applications in supercapacitors. RSC Adv 5(100):81981–81985. doi:10.1039/c5ra10121b

    Article  Google Scholar 

  23. Ghosh D, Giri S, Dhibar S, Das CK (2014) Reduced graphene oxide/manganese carbonate hybrid composite: high performance supercapacitor electrode material. Electrochim Acta 147:557–564. doi:10.1016/j.electacta.2014.09.130

    Article  Google Scholar 

  24. Jampani PH, Velikokhatnyi O, Kadakia K, Hong DH, Damle SS, Poston JA, Manivannan A, Kumta PN (2015) High energy density titanium doped-vanadium oxide-vertically aligned CNT composite electrodes for supercapacitor applications. J Mater Chem A 3(16):8413–8432. doi:10.1039/c4ta06777k

    Article  Google Scholar 

  25. Dubal DP, Kim WB, Lokhande CD (2012) Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application. J Phys Chem Solids 73(1):18–24. doi:10.1016/j.jpcs.2011.09.005

    Article  Google Scholar 

  26. Zhai Y, Ma X, Mao H, Shao W, Xu L, He Y, Qian Y (2015) Mn-doped α-FeOOH nanorods and α-Fe2O3 mesoporous nanorods: facile synthesis and applications as high performance anodes for LIBs. Adv Electron Mater 1(6):1400057. doi:10.1002/aelm.201400057

    Article  Google Scholar 

  27. Wang W, Liu W, Zeng Y, Han Y, Yu M, Lu X, Tong Y (2015) A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv Mater 27(23):3572–3578. doi:10.1002/adma.201500707

    Article  Google Scholar 

  28. Yu M, Han Y, Cheng X, Hu L, Zeng Y, Chen M, Cheng F, Lu X, Tong Y (2015) Holey tungsten oxynitride nanowires: novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage. Adv Mater 27(19):3085–3091. doi:10.1002/adma.201500493

    Article  Google Scholar 

  29. Zeng Y, Han Y, Zhao Y, Zeng Y, Yu M, Liu Y, Tang H, Tong Y, Lu X (2015) Advanced Ti-Doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater 5(12):1402176. doi:10.1002/aenm.201402176

    Article  Google Scholar 

  30. Bauer J, Buss DH, Glemser O (1986) Preparation and electrochemical behaviour of doped manganese dioxide. Ber Bunsenges Phys Chem 90(12):1220–1223

    Article  Google Scholar 

  31. Chang L, Mai L, Xu X, An Q, Zhao Y, Wang D, Feng X (2013) Pore-controlled synthesis of Mn2O3 microspheres for ultralong-life lithium storage electrode. RSC Adv 3(6):1947–1952. doi:10.1039/c2ra22735e

    Article  Google Scholar 

  32. Zhang C, Guo C, Wei Y, Hou L (2016) A simple synthesis of hollow Mn2O3 core-shell microspheres and their application in lithium ion batteries. Phys Chem Chem Phys 18(6):4739–4744. doi:10.1039/c5cp07301d

    Article  Google Scholar 

  33. Liu Q, Zhang X, Yang B, Liu J, Li R, Zhang H, Liu L, Wang J (2015) Construction of THREE-DIMENSIONAL homogeneous NiCo2O4 core/shell Nanostructure as high-performance electrodes for supercapacitors. J Electrochem Soc 162(12):E319–E324. doi:10.1149/2.0831512jes

    Article  Google Scholar 

  34. Yang M, Hong SB, Choi BG (2015) Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors. Phys Chem Chem Phys 17(44):29874–29879. doi:10.1039/c5cp04761g

    Article  Google Scholar 

  35. Yang S, Song X, Zhang P, Gao L (2013) Crumpled nitrogen-doped graphene–ultrafine Mn3O4 nanohybrids and their application in supercapacitors. J Mater Chem A 1(45):14162. doi:10.1039/c3ta12554h

    Article  Google Scholar 

  36. Devaraj S, Vardhan PV, Liu HY, Balaya P (2015) Metal carbonates: alternative to metal oxides for supercapacitor applications? A case study of MnCO3 vs MnO2. J Solid State Electrochem. doi:10.1007/s10008-015-2972-y

    Google Scholar 

  37. Selvam S, Balamuralitharan B, Karthick SN, Savariraj AD, Hemalatha KV, Kim S-K, Kim H-J (2015) Novel high-temperature supercapacitor combined dye sensitized solar cell from a sulfated β-cyclodextrin/PVP/MnCO3 composite. J Mater Chem A 3(19):10225–10232. doi:10.1039/c5ta01792k

    Article  Google Scholar 

  38. Jiangying Q, Feng G, Quan Z, Zhiyu W, Han H, Beibei L, Wubo W, Xuzhen W, Jieshan Q (2013) Highly atom-economic synthesis of graphene/Mn(3)O(4) hybrid composites for electrochemical supercapacitors. Nanoscale 5(7):2999–3005. doi:10.1039/c3nr33700f

    Article  Google Scholar 

  39. Hu Z, Xiao X, Huang L, Chen C, Li T, Su T, Cheng X, Miao L, Zhang Y, Zhou J (2015) 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 7(38):16094–16099. doi:10.1039/c5nr04682c

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Science Foundation of China (Grants 21201129, 51208333, 51374151) and the National Natural Science Foundation of Shanxi Province (2013011012-3) for providing funding support to the current work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunli Guo or Yinghui Wei.

Additional information

Chunchen Zhang and Chunli Guo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Guo, C., Li, T. et al. Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors. J Mater Sci 52, 1477–1485 (2017). https://doi.org/10.1007/s10853-016-0443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0443-1

Keywords

Navigation