Skip to main content

The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

Abstract

Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. However, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In this study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. This study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. Dieter GE (1986) Mechanical metallurgy. McGraw-Hill, Boston

    Google Scholar 

  2. Suresh S (1998) Fatigue of materials. Cambridge University Press, New York

    Book  Google Scholar 

  3. Mughrabi H (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall 31:1367–1379

    Article  Google Scholar 

  4. Sangid MD, Maier HJ, Sehitoglu H (2011) The role of grain boundaries on fatigue crack initiation – an energy approach. Int J Plast 27:801–821

    Article  Google Scholar 

  5. Mughrabi H, Höppel HW (2010) Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int J Fatigue 32:1413–1427

    Article  Google Scholar 

  6. Agnew SR, Vinogradov AY, Hashimoto S, Weertman JR (1999) Overview of fatigue performance of Cu processed by severe plastic deformation. J Electron Mater 28:1038–1044

    Article  Google Scholar 

  7. Mughrabi H (2010) Fatigue, an everlasting materials problem—still en vogue. Procedia Eng 2:3–26

    Article  Google Scholar 

  8. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  9. Padilla HA II, Boyce BL (2010) A review of fatigue behavior in nanocrystalline metals. Exp Mech 50:5–23

    Article  Google Scholar 

  10. Hanlon T, Kwon YN, Suresh S (2003) Grain size effects on the fatigue response of nanocrystalline metals. Scr Mater 49:675–680

    Article  Google Scholar 

  11. Moser B, Hanlon T, Kumar KS, Suresh S (2006) Cyclic strain hardening of nanocrystalline nickel. Scr Mater 54:1151–1155

    Article  Google Scholar 

  12. Boyce BL, Padilla HA (2011) Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall Mater Trans A 42A:1793–1804

    Article  Google Scholar 

  13. Cavaliere P (2009) Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int J Fatigue 31:1476–1489

    Article  Google Scholar 

  14. Kobayashi S, Kamata A, Watanabe T (2015) A mechanism of grain growth-assisted intergranular fatigue fracture in electrodeposited nanocrystalline nickel–phosphorus alloy. Acta Mater 91:70–82

    Article  Google Scholar 

  15. Kobayashi S, Kamata A, Watanabe T (2009) Roles of grain boundary microstructure in high-cycle fatigue of electrodeposited nanocrystalline Ni–P alloy. Scr Mater 61:1032–1035

    Article  Google Scholar 

  16. Bansal S, Saxena A, Hartwig T and Tummala RR (2005) 11th International Conference on Fracture, Turin, Italy

  17. Kumar S, Alam MT, Haque MA (2011) Fatigue insensitivity of nanoscale freestanding aluminum films. J Microelectromech Syst 20:53–58

    Article  Google Scholar 

  18. Garbacz H, Pakiela Z, Kurzydlowski KJ (2010) Fatigue properties of nanocrystalline titanium. Rev Adv Mater Sci 25:256–260

    Google Scholar 

  19. Witney AB, Sanders PG, Weertman JR, Eastman JA (1995) Fatigue of nanocrystalline copper. Scr Metall Mater 33:2025–2030

    Article  Google Scholar 

  20. Hanlon T, Tabachnikova ED, Suresh S (2005) Fatigue behavior of nanocrystalline metals and alloys. Int J Fatigue 27:1147–1158

    Article  Google Scholar 

  21. Meirom RA, Alsem DH, Romasco AL et al (2011) Fatigue-induced grain coarsening in nanocrystalline platinum films. Acta Mater 59:1141–1149

    Article  Google Scholar 

  22. Meirom RA, Clark TE, Muhlstein CL (2012) The role of specimen thickness in the fracture toughness and fatigue crack growth resistance of nanocrystalline platinum films. Acta Mater 60:1408–1417

    Article  Google Scholar 

  23. Yang Y, Imasogie B, Fan GJ, Liaw PK, Soboyejo WO (2008) Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall Mater Trans A 39:1145–1156

    Article  Google Scholar 

  24. Furnish TA, Boyce BL, Sharon JA et al (2016) Fatigue stress concentration and notch sensitivity in nanocrystalline metals. J Mater Res 31:740–752

    Article  Google Scholar 

  25. Boyce BL, Furnish TA, Padilla HA, II, Van Campen D, Mehta A (2015) Detecting rare, abnormally large grains by x-ray diffraction. J Mater Sci 1–11. doi:10.1007/s10853-015-9226-3

  26. Rauch E, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P (2010) Automated nanocrystal and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Zeitschrift fur Kristallographie 225:103–109

    Article  Google Scholar 

  27. Lande J (2008) The area diffraction machine, GitHub repository https://github.com/joshualande/AreaDiffractionMachine

  28. Cheng S, Stoica AD, Wang XL, Wang GY, Choo H, Liaw PK (2007) Fracture of Ni with grain-size from nanocrystalline to ultrafine scale under cyclic loading. Scr Mater 57:217–220

    Article  Google Scholar 

  29. Andrievski RA (2014) Review of thermal stability of nanomaterials. J Mater Sci 49:1449–1460. doi:10.1007/s10853-013-7836-1

    Article  Google Scholar 

  30. Kotan H, Darling KA, Saber M, Scattergood RO, Koch CC (2013) Thermal stability and mechanical properties of nanocrystalline Fe–Ni–zr alloys prepared by mechanical alloying. J Mater Sci 48:8402–8411. doi:10.1007/s10853-013-7652-7

    Article  Google Scholar 

  31. Zhang K, Weertman JR, Eastman JA (2005) Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl Phys Lett 87:061921

    Article  Google Scholar 

  32. Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263

    Article  Google Scholar 

  33. Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326:1686–1690

    Article  Google Scholar 

  34. Padilla HA II, Boyce BL, Battaile CC, Prasad SV (2012) Frictional performance and near-surface evolution of nanocrystalline Ni-Fe as governed by contact stress and sliding velocity. Wear 297:860–871

    Article  Google Scholar 

  35. Rupert TJ, Schuh CA (2010) Sliding wear of nanocrystalline Ni-W: structural evolution and the apparent breakdown of archard scaling. Acta Mater 58:4137–4148

    Article  Google Scholar 

  36. Argibay N, Furnish TA, Boyce BL, Clark BG, Chandross M (2016) Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior. Scr Mater 123:26–29

    Article  Google Scholar 

  37. An XH, Wu SD, Wang ZG, Zhang ZF (2014) Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys. Acta Mater 74:200–214

    Article  Google Scholar 

  38. Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni-Fe. J Mater Sci 49:3847–3859. doi:10.1007/s10853-014-8099-1

    Article  Google Scholar 

  39. Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975

    Article  Google Scholar 

  40. Legros M, Gianola DS, Hemker KJ (2008) In situ tem observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56:3380–3393

    Article  Google Scholar 

  41. Panzarino JF, Ramos JJ, Rupert TJ (2015) Quantitative tracking of grain structure evolution in a nanocrystalline metal during cyclic loading. Modell Simul Mater Sci Eng 23:025005

    Article  Google Scholar 

  42. Schiøtz J (2004) Strain-induced coarsening in nanocrystalline metals under cyclic deformation. Mater Sci Eng A 375–377:975–979

    Article  Google Scholar 

  43. Liu P, Mao SC, Wang LH, Han XD, Zhang Z (2011) Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scr Mater 64:343–346

    Article  Google Scholar 

  44. Wang L, Teng J, Liu P, et al. (2014) Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun 5

  45. Bobylev SV, Ovid’ko IA (2013) Stress-driven rotations of high-angle grain boundaries in nanocrystalline materials. Rev Adv Mater Sci 35:25–38

    Google Scholar 

  46. Feng H, Fang QH, Zhang LC, Liu YW (2013) Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials. Int J Plast 42:50–64

    Article  Google Scholar 

  47. Ovid’ko IA, Sheinerman AG (2016) Free surface effects on rotational deformation in nanocrystalline materials. J Mater Sci 51:6444–6451. doi:10.1007/s10853-016-9942-3

    Article  Google Scholar 

  48. Cheng S, Lee SY, Li L et al (2013) Uncommon deformation mechanisms during fatigue-crack propagation in nanocrystalline alloys. Phys Rev Lett 110:135501

    Article  Google Scholar 

  49. Karanjgaokar N, Chasiotis I (2016) Creep behavior of nanocrystalline au films as a function of temperature. J Mater Sci 51:3701–3714. doi:10.1007/s10853-015-9687-4

    Article  Google Scholar 

  50. Giallonardo JD, Avramovic-Cingara G, Palumbo G, Erb U (2013) Microstrain and growth fault structures in electrodeposited nanocrystalline Ni and Ni-Fe alloys. J Mater Sci 48:6689–6699. doi:10.1007/s10853-013-7469-4

    Article  Google Scholar 

  51. Bufford DC, Stauffer D, Mook WM, Syed Asif SA, Boyce BL, Hattar K (2016) High cycle fatigue in the transmission electron microscope. Nano Lett 16:4946–4953

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the United States Department of Energy, Office of Basic Energy Sciences (BES) (Grant No. 15013170), Division of Materials Science and Engineering. X-ray diffraction experiments were performed at the Stanford Synchrotron Radiation Lightsource, an Office of Science User Facility operated for the United States Department of Energy by Stanford University. FIB notch preparation and electron microscopy were performed under proposal numbers C2014B0049 and U2015B0093 at the Center for Integrated Nanotechnologies, a United States Department of Energy, Office of Basic Energy Sciences User Facility. The authors thank Drs. John Sharon, Cristian Arrington, and Jamin Pillars for material synthesis and Patricia Dickerson for TEM sample preparation via FIB. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Boyce.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Furnish, T.A., Mehta, A., Van Campen, D. et al. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe. J Mater Sci 52, 46–59 (2017). https://doi.org/10.1007/s10853-016-0437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0437-z

Keywords

  • Fatigue
  • Crack Initiation
  • Notch Root
  • Crack Initiation Site
  • Abnormal Grain Growth