Skip to main content

Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy


Ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yield can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm. Combined with electron backscatter diffraction to identify grain orientations, this technique provides information on domain orientation and domain wall type that cannot be readily measured using conventional non-destructive methods. In addition to grain orientation identification, this technique enables dynamic domain structure changes to be observed in functioning capacitors utilizing electrodes that are transparent to the high-energy backscattered electrons. This non-destructive, high-resolution domain imaging technique is applicable to a wide variety of ferroelectric thin films and a multitude of material systems where nanometer-scale crystallographic twin characterization is required.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1

    Seidel J, Martin LW, He Q, Zhan Q, Chu YH, Rother A, Hawkridge ME, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin SV, Gemming S, Wang F, Catalan G, Scott JF, Spaldin NA, Orenstein J, Ramesh R (2009) Conduction at domain walls in oxide multiferroics. Nat Mater 8:229–234

    Article  Google Scholar 

  2. 2

    Guyonnet J, Gaponenko I, Gariglio S, Paruch P (2011) Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films. Adv Mater 23:5377–5382

    Article  Google Scholar 

  3. 3

    Damjanovic D, Demartin M (1997) Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. J. Phys Condens Mat 9:4943–4953

    Article  Google Scholar 

  4. 4

    Zhang QM, Wang H, Kim N, Cross LE (1994) Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J Appl Phys 75:454

    Article  Google Scholar 

  5. 5

    Arlt G, Hennings D, de With G (1985) Dielectric-properties of fine-grained barium-titanate ceramics. J Appl Phys 58:1619–1625

    Article  Google Scholar 

  6. 6

    Land CE, Thacher PD (1969) Ferroelectric ceramic electrooptic materials and devices. P. IEEE 57:751–768

    Article  Google Scholar 

  7. 7

    Land CE, Peercy PS (1977) Photo-Ferroelectric image storage in PLZT ceramics. Inf Disp 13:20–23

    Google Scholar 

  8. 8

    Mante AJH, Volger J (1971) Phonon transport in barium titanate. Physica 52:577–604

    Article  Google Scholar 

  9. 9

    Weilert MA, Msall ME, Anderson AC, Wolfe JP (1993) Phonon scattering from ferroelectric domain walls: phonon imaging in KDP. Phys Rev Lett 71:735–738

    Article  Google Scholar 

  10. 10

    Hopkins PE, Adamo C, Ye LH, Huey BD, Lee SR, Schlom DG, Ihlefeld JF (2013) Effects of coherent ferroelastic domain walls on the thermal conductivity and Kapitza conductance in bismuth ferrite. Appl Phys Lett 102:121903

    Article  Google Scholar 

  11. 11

    Ihlefeld JF, Foley BM, Scrymgeour DA, Michael JR, McKenzie BB, Medlin DL, Wallace M, Trolier-McKinstry S, Hopkins PE (2015) Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett 15:1791–1795

    Article  Google Scholar 

  12. 12

    Soergel E (2005) Visualization of ferroelectric domains in bulk single crystals. Appl Phys B 81:729–751

    Article  Google Scholar 

  13. 13

    Potnis PR, Tsou NT, Huber JE (2011) A review of domain modelling and domain imaging techniques in ferroelectric crystals. Materials 4:417–447

    Article  Google Scholar 

  14. 14

    Denev SA, Lummen TTA, Barnes E, Kumar A, Gopalan V (2011) Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc 94:2699–2727

    Article  Google Scholar 

  15. 15

    Streiffer SK, Eastman JA, Fong DD, Thompson C, Munkholm A, Murty MVR, Auciello O, Bai GR, Stephenson GB (2002) Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films. Phys Rev Lett 89:067601

    Article  Google Scholar 

  16. 16

    Catalan G, Bea H, Fusil S, Bibes M, Paruch P, Barthelemy A, Scott JF (2008) Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys Rev Lett 100:027602

    Article  Google Scholar 

  17. 17

    Ikeda S, Uchikawa Y (1980) SEM imaging of ferroelectric domains. J Electron Microsc 29:209–217

    Google Scholar 

  18. 18

    Zhu SN, Cao WW (1997) Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy. Phys Rev Lett 79:2558–2561

    Article  Google Scholar 

  19. 19

    Sogr AA, Kopylova IB (1997) Observation of the domain structure of ferroelectrics with the scanning electron microscope. Ferroelectrics 191:401–406

    Article  Google Scholar 

  20. 20

    Le Bihan R (1989) Study of ferroelectric and ferroelastic domain structures by scanning electron microscopy. Ferroelectrics 97:19–46

    Article  Google Scholar 

  21. 21

    Gruner D, Shen ZJ (2010) Direct scanning electron microscopy imaging of ferroelectric domains after ion milling. J Am Ceram Soc 93:48–50

    Article  Google Scholar 

  22. 22

    Omori M, Mishima T, Fujimoto T (2011) Modes of domain wall motion and polarization of lead zirconate titanate polycrystals. Jpn J Appl Phys 50:09NC03

    Article  Google Scholar 

  23. 23

    Reichmann A, Zankel A, Reingruber H, Polt P, Reichmann K (2011) Direct observation of ferroelectric domain formation by environmental scanning electron microscopy. J Eur Ceram Soc 31:2939–2942

    Article  Google Scholar 

  24. 24

    Howell JA, Vaudin MD, Cook RF (2014) Orientation, stress, and strain in an (001) barium titanate single crystal with 90° lamellar domains determined using electron backscatter diffraction. J Mater Sci 49:2213–2224. doi:10.1007/s10853-013-7915-3

    Article  Google Scholar 

  25. 25

    Ivry Y, Chu DP, Durkan C (2010) Bundles of polytwins as meta-elastic domains in the thin polycrystalline simple multi-ferroic system PZT. Nanotechnology 21:065702

    Article  Google Scholar 

  26. 26

    Anbusathaiah V, Kan D, Kartawidjaja FC, Mahjoub R, Arredondo MA, Wicks S, Takeuchi I, Wang J, Nagarajan V (2009) Labile ferroelastic nanodomains in bilayered ferroelectric thin films. Adv Mater 21:3497–3502

    Article  Google Scholar 

  27. 27

    Anbusathaiah V, Jesse S, Arredondo MA, Kartawidjaja FC, Ovchinnikov OS, Wang J, Kalinin SV, Nagarajan V (2010) Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Mater 58:5316–5325

    Article  Google Scholar 

  28. 28

    Ehara Y, Yasui S, Nagata J, Kan D, Anbusathaiah V, Yamada T, Sakata O, Funakubo H, Nagarajan V (2011) Ultrafast switching of ferroelastic nanodomains in bilayered ferroelectric thin films. Appl Phys Lett 99:182906

    Article  Google Scholar 

  29. 29

    Assink RA, Schwartz RW (1993) H–1 and C–13 NMR investigations of Pb(Zr, Ti)O3 thin-film precursor solutions. Chem Mater 5:511–517

    Article  Google Scholar 

  30. 30

    Shelton CT, Kotula PG, Brennecka GL, Lam PG, Meyer KE, Maria J-P, Gibbons BJ, Ihlefeld JF (2012) Chemically homogeneous complex oxide thin films via improved substrate metallization. Adv Funct Mater 22:2295–2302

    Article  Google Scholar 

  31. 31

    Gruverman A, Rodriguez BJ, Kingon AI, Nemanich RJ, Cross JS, Tsukada M (2003) Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors. Appl Phys Lett 82:3071–3073

    Article  Google Scholar 

  32. 32

    Kim DJ, Jo JY, Kim TH, Yang SM, Chen B, Kim YS, Noh TW (2007) Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr, Ti)O3 capacitors. Appl Phys Lett 91:132903

    Article  Google Scholar 

  33. 33

    Jungk T, Hoffmann A, Soergel E (2007) Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy. J Appl Phys 102:084102

    Article  Google Scholar 

  34. 34

    Kim Y, Lu XL, Jesse S, Hesse D, Alexe M, Kalinin SV (2013) Universality of polarization switching dynamics in ferroelectric capacitors revealed by 5d piezoresponse force microscopy. Adv Funct Mater 23:3971–3979

    Article  Google Scholar 

  35. 35

    Yang SM, Kim TH, Yoon JG, Noh TW (2012) Nanoscale observation of time-dependent domain wall pinning as the origin of polarization fatigue. Adv Funct Mater 22:2310–2317

    Article  Google Scholar 

  36. 36

    Gruverman A, Wu D, Scott JF (2008) Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys Rev Lett 100:097601

    Article  Google Scholar 

  37. 37

    Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647

    Article  Google Scholar 

  38. 38

    Kanaya K, Okayama S (1972) Penetration and energy-loss theory of electrons in solid targets. J Phys D 5:43

    Article  Google Scholar 

  39. 39

    Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T, Chen L, Melngailis J, Auciello O, Ramesh R (2003) Dynamics of ferroelastic domains in ferroelectric thin films. Nat Mater 2:43–47

    Article  Google Scholar 

  40. 40

    Mtebwa M, Feigl L, Yudin P, McGilly LJ, Shapovalov K, Tagantsev AK, Setter N (2015) Room temperature concurrent formation of ultra-dense arrays of ferroelectric domain walls. Appl Phys Lett 107:142903

    Article  Google Scholar 

Download references


Critical review of this manuscript by Dr. Stanley Chou is greatly appreciated. This research was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. J-P.M. acknowledges support from NSF contract DMR-1508191.

Author information



Corresponding author

Correspondence to Jon F. Ihlefeld.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ihlefeld, J.F., Michael, J.R., McKenzie, B.B. et al. Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy. J Mater Sci 52, 1071–1081 (2017).

Download citation


  • Domain Wall
  • Domain Orientation
  • Stripe Domain
  • Ferroelectric Thin Film
  • Bilayer Film