Journal of Materials Science

, Volume 52, Issue 2, pp 721–735 | Cite as

Mechanochemical synthesis and in vitro studies of chitosan-coated InAs/ZnS mixed nanocrystals

  • Zdenka Bujňáková
  • Erika Dutková
  • Anna Zorkovská
  • Matej Baláž
  • Jaroslav KováčJr.
  • Martin Kello
  • Ján Mojžiš
  • Jaroslav Briančin
  • Peter Baláž
Original Paper

Abstract

In this paper, InAs/ZnS mixed nanocrystals were synthesized by dry high-energy milling approach in the first step. The obtained nanocrystals were characterized from structural point of view by X-ray diffraction analysis and Raman spectroscopy, and from the morphological point of view by scanning electron microscopy. In the next step, the nanocrystals were subjected to wet ultra-fine milling in order to obtain a nanosuspension of chitosan-coated InAs/ZnS nanocrystals with bio-imaging properties. The stability of the nanosuspension was examined by zeta potential and particle size distribution measurements. The prepared nanosuspension was stable with high values of zeta potential. Its optical properties were also studied using UV–Vis and PL spectroscopies. The determined fluorescent properties confirming the potential in bio-imaging applications were verified on cancer cell lines Caco-2, HCT116, HeLa, and MCF7.

References

  1. 1.
    Yang MJ, Wang FC, Yang CH, Bennett BR, Do TQ (1996) A composite quantum well field-effect transistor. Appl Phys Lett 69:85–87CrossRefGoogle Scholar
  2. 2.
    Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128:2526–2527CrossRefGoogle Scholar
  3. 3.
    Allen PM, Liu WH, Chauhan VP, Lee J, Ting AY, Fukumura D et al (2010) InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J Am Chem Soc 132:470–471CrossRefGoogle Scholar
  4. 4.
    Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV (2009) Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 9:2354–2359CrossRefGoogle Scholar
  5. 5.
    Kumar C (2010) Semiconductor nanomaterials. Wiley, WeinheimGoogle Scholar
  6. 6.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic apolymer in biomedical applications. Prog Polym Sci 36:981–1014CrossRefGoogle Scholar
  7. 7.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232CrossRefGoogle Scholar
  8. 8.
    Fan HL, Wang LL, Zhao KK, Li N, Shi ZJ, Ge ZG et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351CrossRefGoogle Scholar
  9. 9.
    Lillo CR, Romero JJ, Portoles ML, Diez RP, Caregnato P, Gonzalez MC (2015) Organic coating of 1–2 nm-size silicon nanoparticles: effect on particle properties. Nano Res 8:2047–2062CrossRefGoogle Scholar
  10. 10.
    Rivero PJ, Urrutia A, Goicoechea J, Zamarreno CR, Arregui FJ, Matias IR (2011) An antibacterial coating based on a polymer/sol–gel hybrid matrix loaded with silver nanoparticles. Nanosc Res Lett 6:1CrossRefGoogle Scholar
  11. 11.
    Nilsson PT, Eriksson AC, Ludvigsson L, Messing ME, Nordin EZ, Gudmundsson A et al (2015) In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry. Nano Res 8:3780–3795CrossRefGoogle Scholar
  12. 12.
    Balaz P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637CrossRefGoogle Scholar
  13. 13.
    Zyryanov VV, Ponomareva VG, Lavrova GV (2006) Preparation, structure, and electrical conductivity of calcium-antimonate-based materials. Inorg Mater 42:410–417CrossRefGoogle Scholar
  14. 14.
    Soiron S, Rougier A, Aymard L, Tarascon JM (2001) Mechanochemical synthesis of Li–Mn–O spinels: positive electrode for lithium batteries. J Power Sources 97–8:402–405CrossRefGoogle Scholar
  15. 15.
    Hallmann S, Fink MJ, Mitchell BS (2011) The mechanochemical formation of functionalized semiconductor nanoparticles for biological, electronic and superhydrophobic surface applications. In: Lu K, Manjooran N, Radovic M, Medvedovski E, Olevsky EA, Li C, Singh G, Chopra N, Pickrell G (eds) Advances in Nanomaterials and Nanostructures, Vol 229. John Wiley & Sons, Inc., Hoboken, NJ. doi:10.1002/9781118144602.ch13 Google Scholar
  16. 16.
    Senna M, Myers N, Aimable A, Laporte V, Pulgarin C, Baghriche O et al (2013) Modification of titania particles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. J Mater Res 28:354–361CrossRefGoogle Scholar
  17. 17.
    Balaz P, Balaz M, Caplovicova M, Zorkovska A, Caplovic L, Psotka M (2014) The dual role of sulfur-containing amino acids in the synthesis of IV–VI semiconductor nanocrystals: a mechanochemical approach. Faraday Discuss 170:169–179CrossRefGoogle Scholar
  18. 18.
    Bujnakova Z, Balaz P, Caplovicova M, Caplovic L, Kovac J, Zorkovska A (2015) Mechanochemical synthesis of InAs nanocrystals. Mater Lett 159:474–477CrossRefGoogle Scholar
  19. 19.
    Serrano J, Cantarero A, Cardona M, Garro N, Lauck R, Tallman RE et al (2004) Raman scattering in beta-ZnS. Phys Rev B 69:014301CrossRefGoogle Scholar
  20. 20.
    Arguello CA, Rousseau DL, Porto SPS (1969) First-order Raman effect in wurtzite-type crystals. Phys Rev 181:1351CrossRefGoogle Scholar
  21. 21.
    Schneider J, Kirby RD (1972) Raman scattering from ZnS polytypes. Phys Rev B 6:1290CrossRefGoogle Scholar
  22. 22.
    Ebisuzaki Y, Nicol MJ (1972) Raman spectrum of hexagonal zinc sulfide at high pressures. J Phys Chem Solids 33:763–766CrossRefGoogle Scholar
  23. 23.
    Brafman O, Mitra SS (1968) Raman effect in wurtzite- and zinc-blende-type ZnS single crystals. Phys Rev 171:931CrossRefGoogle Scholar
  24. 24.
    Li T, Gao L, Lei W, Guo L, Yang T, Chen Y et al (2013) Raman study on zinc-blende single InAs nanowire grown on Si (111) substrate. Nanosc Res Lett 8:1–7CrossRefGoogle Scholar
  25. 25.
    Cheetham KJ, Carrington PJ, Krier A, Patel II, Martin FL (2012) Raman spectroscopy of pentanary GaInAsSbP narrow gap alloys lattice matched to InAs and GaSb. Semicond Sci Technol 27:015004CrossRefGoogle Scholar
  26. 26.
    Alim KA, Fonoberov VA, Balandin AA (2005) Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl Phys Lett 86:053103CrossRefGoogle Scholar
  27. 27.
    Bajaj G, Van Alstine WG, Yeo Y (2012) Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS One 7:e30899CrossRefGoogle Scholar
  28. 28.
    Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed 1:117–128CrossRefGoogle Scholar
  29. 29.
    Ramanery FP, Mansur AAP, Mansur HS (2013) One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates. Nanoscale Res Lett 8:512. doi:10.1186/1556-276X-8-512 CrossRefGoogle Scholar
  30. 30.
    Pawlak A, Mucha A (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166CrossRefGoogle Scholar
  31. 31.
    Bhattarai SR, Kc RB, Kim SY, Sharma M, Khil MS, Hwang PH et al (2008) N-hexanoyl chitosan stabilized magnetic nanoparticles: implication for cellular labeling and magnetic resonance imaging. J Nanobiotechnol 6:1CrossRefGoogle Scholar
  32. 32.
    Ahmad T, Bae H, Iqbal Y, Rhee I, Hong S, Chang Y et al (2015) Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging. J Magn Magn Mater 381:151–157CrossRefGoogle Scholar
  33. 33.
    Salehizadeh H, Hekmatian E, Sadeghi M, Kennedy K (2012) Synthesis and characterization of core-shell Fe3O4–gold–chitosan nanostructure. J Nanobiotechnol 10:1CrossRefGoogle Scholar
  34. 34.
    Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, Brzozowski K, Thoming J et al (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636CrossRefGoogle Scholar
  35. 35.
    Brus LE (1984) Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409CrossRefGoogle Scholar
  36. 36.
    Viswanath R, Naik HSB, Somalanaik YKG, Neelanjeneallu PKP, Harish KN, Prabhakara MC (2014) Studies on characterization, optical absorption, and photoluminescene of yttrium doped ZnS nanoparticles. J Nanotechnol 2014:8CrossRefGoogle Scholar
  37. 37.
    Wageh S, Ling ZS, Xu-Rong X (2003) Growth and optical properties of colloidal ZnS nanoparticles. J Cryst Growth 255:332–337CrossRefGoogle Scholar
  38. 38.
    Chen R, Li DH, Liu B, Peng ZP, Gurzadyan GG, Xiong QH et al (2010) Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. Nano Lett 10:4956–4961CrossRefGoogle Scholar
  39. 39.
    Balaz P, Bujnakova Z, Dutkova E, Balaz M, Zorkovska A, Kovac J et al (2015) Mixed core CdS@ZnS nanocrystals: synthesis, cadmium dissolution and cancer cell management. In: Rene ER, Bhattarai S, Nancharaiah YV, Lens PNL (eds) 4th international conference on research frontiers in chalcogen cycle science and technology. Delft. pp 7–11Google Scholar
  40. 40.
    Wang X, Li XY (2014) Photocatalytic hydrogen generation with simultaneous organic degradation by a visible light-driven CdS/ZnS film catalyst. Mater Sci Eng B 181:86–92CrossRefGoogle Scholar
  41. 41.
    Zucker RM, Massaro EJ, Sanders KM, Degn LL, Boyes WK (2010) Detection of TiO2 nanoparticles in cells by flow cytometry. Cytom Part A 77A:677–685CrossRefGoogle Scholar
  42. 42.
    Zucker RM, Daniel KM, Massaro EJ, Karafas SJ, Degn LL, Boyes WK (2013) Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence. Cytom Part A 83:962–972Google Scholar
  43. 43.
    Bancos S, Tsai D-H, Hackley V, Weaver JL, Tyner KM (2012) Evaluation of viability and proliferation profiles on macrophages treated with silica nanoparticles in vitro via plate-based, flow cytometry, and coulter counter assays. ISRN Nanotechnol 2012:11CrossRefGoogle Scholar
  44. 44.
    Xu A, Chai YF, Nohmi T, Hei TK (2009) Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 6:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zdenka Bujňáková
    • 1
  • Erika Dutková
    • 1
  • Anna Zorkovská
    • 1
  • Matej Baláž
    • 1
  • Jaroslav KováčJr.
    • 2
  • Martin Kello
    • 3
  • Ján Mojžiš
    • 3
  • Jaroslav Briančin
    • 1
  • Peter Baláž
    • 1
  1. 1.Institute of GeotechnicsSlovak Academy of SciencesKošiceSlovakia
  2. 2.Institute of Electronics and PhotonicsSlovak University of TechnologyBratislavaSlovakia
  3. 3.Faculty of MedicineP. J. Šafárik UniversityKošiceSlovakia

Personalised recommendations