Skip to main content
Log in

Plasmon-enhanced optical absorption with graded bandgap in diamond-like carbon (DLC) films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diamond-like carbon (DLC) films with tunable optical bandgap (Eg) were successfully deposited on glass and n-Si (100) substrates by radio frequency (RF)-sputtering technique in different argon (Ar) and acetylene (C2H2) plasmas. The bandgap of the films can be tuned from 1.41 to 1.28 eV, which correlates with the sp2 content, which increases from 56.3 to 63.7 %, respectively. The different ratios of sp2/sp3 lead to different bandgaps of the DLC films. Plasmonic nanoparticles of silver (Ag) were also embedded in the DLC matrix by reactive magnetron sputtering to study the enhancement of light absorption in DLC films. The absorption coefficient significantly increased when the DLC films were incorporated with 10 at.% of silver nanoparticles. Raman and X-ray photoelectron spectroscopy (XPS) studies were utilized to determine the bonding nature and sp2/sp3 ratios of DLC–Ag films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhu H, Wei J, Wang K, Wu D (2009) Applications of carbon materials in photovoltaic solar cells. Sol Energy Mater Sol Cells 93:1461–1470

    Article  Google Scholar 

  2. Ghosh B, Ghosh D, Ghosh A, Hussain S, Bhar R, Pal AK (2014) Electrodeposited diamond-like carbon (DLC) films on n-Si(100) substrates for photovoltaic application. Mater Sci Semicond Process 25:130–136

    Article  Google Scholar 

  3. Kalaga K, Umeno M, Nukaya Y, Soga T, Jimbo T (2000) Photovoltaic and spectral photoresponse characteristics of nC/pC solar cell on a p-silicon substrate. Appl Phys Lett 77(10):1472–1474

    Article  Google Scholar 

  4. Ma ZQ, Liu BX (2001) Boron-doped diamond-like amorphous carbon as photovoltaic films in solar cell. Sol Energy Mater Sol Cells 69(4):339–344

    Article  Google Scholar 

  5. D. Ghosh, B. Ghosh, Anindita Ghosh, S. Hussain, R. Bhar, A.K. Pal (2013) Carbon based PV: n-Si(100)/DLC structure for photovoltaic application. ISRN-Renew Energy, 851876. doi: 10.1155/2013/851876

  6. M. Zhang, X. Cheng, C. Chen (2008) Research of diamond-like carbon (DLC) films: promising candidate for absorber layer of Solar Cells. Sixth International Conference on Thin Film Physics and Applications, Proceedings of SPIE, 6984:69843E. doi:10.1117/12.792179

  7. Tinchev SS, Nikolova PI, Dyulgerska JT, Danev G, Babeva Tz (2005) a-C: h absorber layer for solar cells matched to solar spectrum. Sol Energy Mater Sol Cells 86(3):421–426

    Article  Google Scholar 

  8. Despeisse M, Battaglia C, Boccard M, Bugnon G, Charriere M, Cuony P, Hanni S, Lofgren L, Meillaud F, Parascandolo G, Soderstrom T, Ballif C (2011) Optimization of thin film silicon solar cells on highly textured substrates. Phys status solidi (a) 208:1863–1868

    Article  Google Scholar 

  9. Mellor A, Tobías I, Martí A, Mendes MJ, Luque A (2011) Upper limits to absorption enhancement in thick solar cells using diffraction gratings. Prog Photovolt Res Appl 19:676–687

    Article  Google Scholar 

  10. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  11. Hairen T, Santbergen R, Guangtao Y, Smets AHM, Zeman M (2013) Combined Optical and Electrical Design of Plasmonic Back Reflector for High-Efficiency Thin-Film Silicon Solar Cells. IEEE J Photovolt 3:53–58

    Article  Google Scholar 

  12. Morawiec S, Mendes MJ, Mirabella S, Simone F, Priolo F, Crupi I (2013) Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties. Nanotechnology 24:265601–265611

    Article  Google Scholar 

  13. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105–093108

    Article  Google Scholar 

  14. Polman A (2008) Plasmonics applied. Science 322:868–869

    Article  Google Scholar 

  15. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    Article  Google Scholar 

  16. Ghosh B, Ghosh D, Hussain S, Chakraborty BR, Sehgal G, Bhar R, Pal AK (2014) Inclusion of nano-Ag plasmonic layer enhancing the performance of p-Si/CdS solar cells. Phys Status Solidi A 211(4):890–900

    Article  Google Scholar 

  17. Meˇskinisa S, Ciegisa A, Vasiliauskas A, Tamuleviˇcien˙e A, Slapikas K, Juˇsk˙enas R, Niaura G, Tamuleviˇcius S (2014) Plasmonic properties of silver nanoparticles embedded in diamond like carbon films: influence of structure and composition. Appl Surf Sci 317:1041–1046

    Article  Google Scholar 

  18. Tritsaris G, Mathioudakis C, Kelires P, Kaxiras E (2012) Optical and elastic properties of diamond-like carbon with metallic inclusions: a theoretical study. J Appl Phys 112:103503–103506

    Article  Google Scholar 

  19. Narayan R, Scholvin D (2005) Nanostructured carbon-metal composite films. J Vac Sci Technol B 23:1041–1046

    Article  Google Scholar 

  20. Yaremchuk I, Tamulevičienė A, Tamulevičius T, Šlapikas K, Balevičius Z, Tamulevičius S (2014) Modeling of the plasmonic properties of DLC-Ag nanocomposite films. Phys Status Solidi (a) 211:329–335

    Article  Google Scholar 

  21. Paul R, Gayen RN, Hussain S, Khanna V, Bhar R, Pal AK (2009) Synthesis and characterization of composite films of silver nanoparticles embedded in DLC matrix prepared by plasma CVD technique. Euro Phys J Appl Phys 47:10502–10513

    Article  Google Scholar 

  22. Wang C, Yu X, Hua M (2009) Microstructure and mechanical properties of Ag-containing diamond-like carbon films in mid-frequency dual-magnetron sputtering. Appl Surf Sci 256:1431–1435

    Article  Google Scholar 

  23. Lungu CP (2005) Nanostructure influence on DLC-Ag tribological coatings. Surf Coat Technol 200:198–202

    Article  Google Scholar 

  24. Ahmed SF, Moon MW, Lee KR (2008) Enhancement of electron field emission property with silver incorporation into diamondlike carbon matrix. Appl Phys Lett 92:193502–193504

    Article  Google Scholar 

  25. Zhang HS, Endrino JL, Anders A (2008) Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver. Appl Surf Sci 255:2551–2556

    Article  Google Scholar 

  26. Moriguchi H, Ohara H, Tsujioka M (2016) History and Application of Diamond-Like Carbon Manufacturing Processes. Sei Tech Rev 82:52–58

    Google Scholar 

  27. K. Baba, R. Hatada, S. Flege, W. Ensinger (2012) Preparation and properties of Ag-containing diamond-like carbon films by magnetron plasma source ion implantation, Adv. Mater. Sci. Eng. 2012(2012):536853. doi: 10.1155/2012/536853

  28. Yaremchuk I, Meškinis Š, Fitio V, Bobitski Y, Šlapikas K, Čiegis A, Balevičius Z, Selskis A, Tamulevičius S (2015) Spectroellipsometric characterization and modeling of plasmonic diamond-like carbon nanocomposite films with embedded Ag nanoparticles. Nanoscale Res Lett 10:157–163

    Article  Google Scholar 

  29. Hussain S, Ghosh D, Ghosh B, Bhar R, Pal AK (2013) Growth of carbon nanostructures on p-, i- and n-Si substrates by electrochemical route. J Phys D Appl Phys 46:355301–355308

    Article  Google Scholar 

  30. Holland L, Ojha SM (1979) The growth of carbon films with random atomic structure from ion impact damage in a hydrocarbon plasma. Thin Solid Films 58:107–116

    Article  Google Scholar 

  31. Paul R, Das SN, Dalui S, Gayen RN, Roy RK, Bhar R, Pal AK (2008) Synthesis of DLC films with different sp2/sp3 ratios and their hydrophobic behaviour. J Phys D Appl Phys 41:055309–055315

    Article  Google Scholar 

  32. Ahmed SF, Moon MW, Lee KR (2009) Effect of silver doping on optical property of diamond like carbon films. Thin Solid Films 517:4035–4038

    Article  Google Scholar 

  33. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  Google Scholar 

  34. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37:129–281

    Article  Google Scholar 

  35. Paul R, Hussain S, Majumder S, Varma S, Pal AK (2009) Surface plasmon characteristics of nanocrystalline gold/DLC composite films prepared by plasma CVD technique. Mater Sci Eng B 164:156–164

    Article  Google Scholar 

  36. Grill A (1999) Electrical and optical properties of diamond-like carbon. Thin Solid Films 355–356:189–193

    Article  Google Scholar 

  37. Tauc J, Grigorovic R, Vancu A (1966) Optical Properties and Electronic Structures of Amorphous Germanium. Phys Status Solidi 15:627–637

    Article  Google Scholar 

  38. Lux-Steiner MCh, Willeke G (2001) Strom von der Sonne. Phys Bl 57:47–53

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank π-NANO Anillo Project ACT-1117, Fondecyt Project N° 1150652, and Postdoctoral Fondecyt Project N° 3140565. BG wishes to thank Prof. Víctor Fuenzalida, the Department of Physics, Universidad de Chile, and Roberto Villarroel, a PhD student from the same University for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ghosh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Guzmán-Olivos, F. & Espinoza-González, R. Plasmon-enhanced optical absorption with graded bandgap in diamond-like carbon (DLC) films. J Mater Sci 52, 218–228 (2017). https://doi.org/10.1007/s10853-016-0324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0324-7

Keywords

Navigation