Skip to main content
Log in

Humidity sensing effect in Bi25FeO39 sillenite-like compound

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have synthesized and characterized structural, morphological, and transport properties of three members of bismuth ferrite family. We have observed a colossal changing in the electrical resistivity of Bi25FeO39 due to humidity adsorption/desorption on the surface of the sample. We suggest that this promising humidity sensing behavior effect is enhanced by the presence of a framework structure that contains electrically polarized Bi3+ cations along with short-range ordered oxygen-vacancies. As a consequence, Bi25FeO39 compound is a real candidate for humidity sensing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fu G, Chen H, Chen Z, Kohler H (2002) Humidity sensitive characteristics of Zn2SnO4–LiZnVO4 thick films prepared by the sol–gel method. Sens Actuators B Chem 81:308–312

    Article  Google Scholar 

  2. Singh R, Yadav AK, Gautam C (2011) Synthesis and humidity sensing investigations of nanostructured ZnSnO3. J Sens Technol 1:116–124

    Article  Google Scholar 

  3. Faia PM, Furtado CS, Ferreira AJ (2005) AC impedance spectroscopy: a new equivalent circuit for titania thick film humidity sensor Sens. Actuators B Chem 107:353–359

    Article  Google Scholar 

  4. Yang W, Yu Y, Starr MB, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X (2015) Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core-shell nanowire photoanodes. Nano Lett 15:7574–7580

    Article  Google Scholar 

  5. Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism and fabrication technologies: a comprehensive review. Sensors 14:7881–7939

    Article  Google Scholar 

  6. Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sens Lett 3:274–295

    Article  Google Scholar 

  7. Xiaomeng L, Jimin X, Yuanzhi S, Jiamin L (2007) Surfactant-assisted hydrothermal preparation of submicrometer-sized two-dimensional BiFeO3 plates and their photocatalytic activity. J Mater Sci 42:6824–6827. doi:10.1007/s10853-006-1401-0

    Article  Google Scholar 

  8. Tripathy A, Pramanik S, Cho J, Santhosh J (2014) Osman NAA, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors 14:16343–16422

    Article  Google Scholar 

  9. Liu L, Ye X, Wu K, Han R, Zhou Z, Cui T (2009) Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors 9:1714–1721

    Article  Google Scholar 

  10. Kiasari NM, Soltanian S, Gholamkhass B, Servati P (2012) Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sens Actuators A Phys 182:101–105

    Article  Google Scholar 

  11. Tsaia FS, Wang SJ (2014) Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets. Sens Actuators B Chem 193:280–287

    Article  Google Scholar 

  12. Singh R, Yadav AK, Gautam C (2011) Synthesis and humidity sensing investigations of Nanostructured ZnSnO3. J Sens Technol 1:116–124

    Article  Google Scholar 

  13. Kannan PK, Saraswathi R, Rayappan JBB (2010) A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film. Sens Actuators A Phys 164:8–14

    Article  Google Scholar 

  14. Jeseentharani V, Reginamary L, Jeyaraj B, Dayalan A, Nagaraja KS (2012) Nanocrystalline spinel NixCu0.82xZn0.2Fe2O4: a novel material for humidity sensing. J Mater Sci 47:3529–3534. doi:10.1007/s10853-011-6198-9

    Article  Google Scholar 

  15. Gao T, Chen Z, Huang Q, Niu F, Huang X, Qin L, Huang Y (2015) A review: preparation of bismuth ferrite nanoparticles and its applications in visible light induced photocatalysis. Rev Adv Mater Sci 40:97–109

    Google Scholar 

  16. Mefford JT, Rong X, Abakumov AM, Hardin WG, Dai S, Kolpak AM, Johnston KP, Stevenson KJ (2016) Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts. Nat Commun 7:11053

    Article  Google Scholar 

  17. Dong G, Fan H, Tian H, Fanga J, Li Q (2015) Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite. RSC Adv 5:29618–29623

    Article  Google Scholar 

  18. Batzill M, Diebold U (2007) Surface studies of gas sensing metal oxides. Phys Chem Chem Phys 9:2307–2318

    Article  Google Scholar 

  19. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139:1–23

    Article  Google Scholar 

  20. Ramirez FEN, Cabrera-Pasca GA, Mestnik-Filho J, Carbonari AW, Souza JA (2015) Magnetic and transport properties assisted by local distortions in Bi2Mn4O10 and Bi2Fe4O9 multiferroic compounds. J Alloys Compd 651:405–413

    Article  Google Scholar 

  21. Dziubaniuk M, Koronska RB, Suchanicz J, Wyrwa J, Rekas M (2013) Application of bismuth ferrite protonic conductor for ammonia gas detection. Sens Actuators B Chem 188:957–964

    Article  Google Scholar 

  22. Poghossian AS, Abovian HV, Avakian PB, Mkrtchian SH, Haroutunian VM (1991) Bismuth ferrites: new materials for semiconductor gas Sensors. Sens Actuators B Chem 4:545–549

    Article  Google Scholar 

  23. Catalan BG, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  Google Scholar 

  24. Waghmarea SD, Jadhava VV, Gorea SK, Yoonb SJ, Ambadeb SB, Lokhandec BJ, Manea RS, Hanb SH (2012) Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures. Mater Res Bull 47:4169–4173

    Article  Google Scholar 

  25. Zatsiupa AA, Bashkirov LA, Troyanchuk IO, Petrov GS, Galyas AI, Lobanovsky LS, Truhanov SV (2014) Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite. J Solid State Chem 212:147–150

    Article  Google Scholar 

  26. Köferstein R, Buttlar T, Ebbinghaus SG (2014) Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J Solid State Chem 217:50–56

    Article  Google Scholar 

  27. Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) The nature of the hydrated excess proton in water. Nature 397:601

    Article  Google Scholar 

  28. Zhang L, Zou Y, Song J, Pan CL, Sheng SD, Houc CM (2016) Enhanced photocatalytic activity of Bi25FeO40–Bi2WO6 heterostructures based on the rational design of the heterojunction interface. RSC Adv 6:26038–26044

    Article  Google Scholar 

  29. Zhang L, Zhang X, Zou Y, Xu YH, Pan CL, Hu JS, Hou CM (2015) Hydrothermal synthesis, influencing factors and excellent photocatalytic performance of novel nanoparticle-assembled Bi25FeO40 tetrahedrons. CrystEngComm 17:6527–6537

    Article  Google Scholar 

  30. Valant M, Suvorov D (2002) Synthesis and characterization of a new sillenite compound-Bi12(B0.5P0.5)O20. J Am Ceram Soc 85:355–358

    Article  Google Scholar 

  31. Scurti CA, Auvray N, Lufaso MW, Takeda S, Kohno H, Arenas DJ (2014) Electron diffraction study of the sillenites Bi12SiO20, Bi25FeO39 and Bi25InO39: evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites. Am Inst Phys Adv 4:087125

    Google Scholar 

Download references

Acknowledgements

This material is based upon the work supported by the Brazilian agency CNPq under Grants Nos. 306431/2014-9 and 455092/2014-1 and FAPESP under Grants Nos. 2013/16172-5, 2010/18364-0 and 2016/09769-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez, F.E.N., Espinosa, E.E., Pedroza, L.S. et al. Humidity sensing effect in Bi25FeO39 sillenite-like compound. J Mater Sci 51, 10982–10989 (2016). https://doi.org/10.1007/s10853-016-0310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0310-0

Keywords

Navigation