Skip to main content
Log in

Free-standing silver/carbon nanotube metal matrix composite thin films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Advanced metal matrix composite (MMC) thin-film electrodes were fabricated utilizing single-wall carbon nanotubes (SWCNTs) as a reinforcement material. The MMCs were embedded with SWCNT thin films of 10, 20, and 50 nm thicknesses between thermally evaporated 1.5 µm Ag layers. A method has been developed to release the MMCs as free-standing films, and tensile testing was performed to evaluate the mechanical properties. The MMC containing a 20-nm SWCNT layer achieved a ~30 % increase in ultimate tensile strength, and a ~100 % increase in strain-to-failure, resulting in a ~150 % increase in toughness compared to Ag control samples. Scanning electron microscopy (SEM) analysis of the MMC microstructure revealed a decrease in Ag grain size with increased SWCNT loading, which correlated with the mechanical performance to identify the critical range of SWCNT layer thicknesses to achieve reinforcement. SEM also revealed SWCNTs protruding more than 1 μm from the fracture edges, indicating the potential of the MMCs to bridge micro-cracks in electrodes. The collective results show promise for SWCNT MMCs as an advanced electrode material capable of bridging micro-cracks in solar cells and flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Tsai JTH, Hwang H-L (2009) Carbon nanotube reinforced conductors for flexible electronics. J Disp Technol 5(6):232–235

    Article  Google Scholar 

  2. Kajari-Schröder S, Kunze I, Eitner U, Köntges M (2011) Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests. Sol Energy Mater Sol Cells 95(11):3054–3059. doi:10.1016/j.solmat.2011.06.032

    Article  Google Scholar 

  3. Köntges M, Kunze I, Kajari-Schröder S, Breitenmoser X, Bjørneklett B (2011) The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol Energy Mater Sol Cells 95(4):1131–1137. doi:10.1016/j.solmat.2010.10.034

    Article  Google Scholar 

  4. Chaturvedi P, Hoex B, Walsh TM (2013) Broken metal fingers in silicon wafer solar cells and PV modules. Sol Energy Mater Sol Cells 108:78–81. doi:10.1016/j.solmat.2012.09.013

    Article  Google Scholar 

  5. Reijenga TH, Kaan HF (2016) PV in architecture. Handbook of photovoltaic science and engineering, 2nd edn. Rochester Institute of Technology, Rochester, pp 1043–1077

    Google Scholar 

  6. Phillips AB, Tompkins BL, Song Z, Khanal RR, Liyanage GK, Gapp ND, Wilt DM, Heben MJ (2015) Carbon nanotube reinforced cu metal matrix composites for current collection from space photovoltaics. In: 2015 IEEE 42nd Photovoltaic specialist conference (PVSC), 14–19 June 2015, pp 1–5. doi:10.1109/PVSC.2015.7355667

  7. Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55(3):211–218. doi:10.1016/j.matchar.2005.05.003

    Article  Google Scholar 

  8. Cha SI, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381. doi:10.1002/adma.200401933

    Article  Google Scholar 

  9. Arnaud C, Lecouturier F, Mesguich D, Ferreira N, Chevallier G, Estournès C, Weibel A, Laurent C (2016) High strength–high conductivity double-walled carbon nanotube–copper composite wires. Carbon 96:212–215. doi:10.1016/j.carbon.2015.09.061

    Article  Google Scholar 

  10. Bakshi SR, Singh V, Seal S, Agarwal A (2009) Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf Coat Technol 203(10–11):1544–1554. doi:10.1016/j.surfcoat.2008.12.004

    Article  Google Scholar 

  11. Phuong DD, Van Trinh P, Van An N, Van Luan N, Minh PN, Khisamov RK, Nazarov KS, Zubairov LR, Mulyukov RR, Nazarov AA (2014) Effects of carbon nanotube content and annealing temperature on the hardness of CNT reinforced aluminum nanocomposites processed by the high pressure torsion technique. J Alloys Compd 613:68–73

    Article  Google Scholar 

  12. Gill P, Munroe N (2012) Study of carbon nanotubes in Cu-Cr metal matrix composites. J Mater Eng Perform 21(11):2467–2471. doi:10.1007/s11665-012-0198-z

    Article  Google Scholar 

  13. Shi L, Sun C, Gao P, Zhou F, Liu W (2006) Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings. Surf Coat Technol 200(16):4870–4875

    Article  Google Scholar 

  14. Espinosa H, Prorok B, Fischer M (2003) A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J Mech Phys Sol 51(1):47–67

    Article  Google Scholar 

  15. Chasiotis I, Bateson C, Timpano K, McCarty A, Barker N, Stanec J (2007) Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Sol Film 515(6):3183–3189

    Article  Google Scholar 

  16. Emery R, Povirk G (2003) Tensile behavior of free-standing gold films Part I. Coarse-grained films. Acta Mater 51(7):2067–2078

    Article  Google Scholar 

  17. Haque M, Saif M (2004) Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. Proc Natl Acad Sci USA 101(17):6335–6340

    Article  Google Scholar 

  18. Huang H, Spaepen F (2000) Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater 48(12):3261–3269

    Article  Google Scholar 

  19. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276. doi:10.1126/science.1101243

    Article  Google Scholar 

  20. Landi BJ, Cress CD, Evans CM, Raffaelle RP (2005) Thermal oxidation profiling of single-walled carbon nanotubes. Chem Mater 17(26):6819–6834. doi:10.1021/Cm052002u

    Article  Google Scholar 

  21. Landi BJ, Ruf HJ, Evans CM, Cress CD, Raffaelle RP (2005) Purity assessment of single-wall carbon nanotubes, using optical absorption spectroscopy. J Phys Chem B 109(20):9952–9965. doi:10.1021/Jp044990c

    Article  Google Scholar 

  22. Rossi JE, Cress CD, Merrill A, Soule KJ, Cox ND, Landi BJ (2015) Intrinsic diameter dependent degradation of single-wall carbon nanotubes from ion irradiation. Carbon 81:488–496. doi:10.1016/j.carbon.2014.09.081

    Article  Google Scholar 

  23. Li F, Cheng H, Bai S, Su G, Dresselhaus M (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77(20):3161–3163

    Article  Google Scholar 

  24. Walters DA, Ericson LM (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett 74(25):3803

    Article  Google Scholar 

  25. Cox ND, Rossi JE, Landi BJ(2015) Carbon nanotube metal matrix composites for solar cell electrodes. In: 2015 IEEE 42nd photovoltaic specialist conference (PVSC), 14–19 June 2015, pp 1–4. doi:10.1109/PVSC.2015.7355867

  26. Wilson K, Barrera EV, Bayazitoglu Y (2010) Processing of titanium single-walled carbon nanotube metal-matrix composites by the induction melting method. J Compos Mater 44(9):1037–1048. doi:10.1177/0021998310367263

    Article  Google Scholar 

  27. Louchet F, Weiss J, Richeton T (2006) Hall-Petch law revisited in terms of collective dislocation dynamics. Phys Rev Lett 97(7):075504

    Article  Google Scholar 

  28. Friedman LH, Chrzan D (1998) Scaling theory of the hall-petch relation for multilayers. Phys Rev Lett 81(13):2715

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the U.S. Government. This material is based on research sponsored by the Air Force Research Laboratory under Agreement Number FA9453-14-1-0232. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Landi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, N.D., Rape, A., Pham, M. et al. Free-standing silver/carbon nanotube metal matrix composite thin films. J Mater Sci 51, 10935–10942 (2016). https://doi.org/10.1007/s10853-016-0305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0305-x

Keywords

Navigation