Journal of Materials Science

, Volume 51, Issue 23, pp 10408–10417 | Cite as

Crystalline coherence length effects on the thermal conductivity of MgO thin films

  • Kelsey E. Meyer
  • Ramez Cheaito
  • Elizabeth Paisley
  • Christopher T. Shelton
  • Jeffrey L. Braun
  • Jon-Paul Maria
  • Jon F. Ihlefeld
  • Patrick E. Hopkins
Original Paper


Phonon scattering in crystalline systems can be strongly dictated by a wide array of defects, many of which can be difficult to observe via standard microscopy techniques. We experimentally demonstrate that the phonon thermal conductivity of MgO thin films is proportional to the crystal’s coherence length, a property of a solid that quantifies the length scale associated with crystalline imperfections. Sputter-deposited films were prepared on (100)-oriented silicon and then annealed to vary the crystalline coherence, as characterized using x-ray diffraction line broadening. We find that the measured thermal conductivity of the MgO films varies proportionally with crystalline coherence length, which is ultimately limited by the grain size. The microstructural length scales associated with crystalline defects, such as small-angle tilt boundaries, dictate this crystalline coherence length, and our results demonstrate the role that this length scale has on the phonon thermal conductivity of thin films. Our results suggest that this crystalline coherence length scale provides a measure of the limiting phonon mean free path in crystalline solids, a quantity that is often difficult to measure and observe with more traditional imagining techniques.


Thermal Conductivity Coherence Length Thermal Conductivity Measurement Phonon Thermal Conductivity Thermal Boundary Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank J. T. Gaskins for electron beam evaporation of the aluminum transducers. The authors acknowledge the use of the Analytical Instrument Facility (AIF) at North Carolina State University, which is supported by NSF contracts DMR 1337694 and DMR 1108071. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories, the Office of Naval Research (N00014-15-12769), and the National Science Foundation (EECS-1509362). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04–94AL85000.


  1. 1.
    Klemens PG (1955) The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc Lond Sect A 68 1113–1128Google Scholar
  2. 2.
    Srivastava GP (1990) The physics of phonons. Taylor and Francis, New YorkGoogle Scholar
  3. 3.
    Marconet AM, Asheghi M, Goodson KE (2013) From the casimir limit to phononic crystals: twenty years of phonon transport studies using silicon-on-insulator technology. J Heat Transfer 135:061601CrossRefGoogle Scholar
  4. 4.
    Abeles B (1963) Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev 131:1906–1911CrossRefGoogle Scholar
  5. 5.
    Cheaito R, Duda JC, Beechem TE, Hattar K, Ihlefeld JF, Medlin DL, Rodriguez MA, Campion MJ, Piekos ES, Hopkins PE (2012) Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films. Phys Rev Lett 109:195901CrossRefGoogle Scholar
  6. 6.
    Wang Z, Alaniz JE, Jang W, Garay JE, Dames C (2011) Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett 11:2206–2213CrossRefGoogle Scholar
  7. 7.
    Donovan BF, Foley BM, Ihlefeld JF, Maria J-P, Hopkins PE (2014) Spectral phonon scattering effects on the thermal conductivity of nano-grained barium titanate. Appl Phys Lett 105:082907CrossRefGoogle Scholar
  8. 8.
    Foley BM, Brown-Shaklee HJ, Duda JC, Cheaito R, Gibbons BJ, Medlin D, Ihlefeld JF, Hopkins PE (2012) Thermal conductivity of nano-grained SrTiO3 thin films. Appl Phys Lett 101:231908CrossRefGoogle Scholar
  9. 9.
    Ni Y, Xiong S, Volz S, Dumitrica T (2014) Thermal transport along the dislocation line in silicon carbide. Phys Rev Lett 113:124301CrossRefGoogle Scholar
  10. 10.
    Bierman MJ, Lau YKA, Kvit AV, Schmitt AL, Jin S (2008) Dislocation-driven nanowire growth and Eshelby twist. Science 320:1060–1063CrossRefGoogle Scholar
  11. 11.
    Jacobs BW, Crimp MA, McElroy K, Ayres VM (2008) Nanopipes in gallium nitride nanowires and rods. Nano Lett 8:4353–4358CrossRefGoogle Scholar
  12. 12.
    Zhu J, Peng H, Marshall AF, Barnett DM, Nix WD, Cui Y (2008) Formation of chiral branched nanowires by the Eshelby twist. Nat Nanotechnol 3:477–481CrossRefGoogle Scholar
  13. 13.
    Morin SA, Jin S (2010) Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Lett 10:3459–3463CrossRefGoogle Scholar
  14. 14.
    Meng F, Morin SA, Forticaux A, Jin S (2013) Screw dislocation driven growth of nanomaterials. Acc Chem Res 46:1616–1626CrossRefGoogle Scholar
  15. 15.
    Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348:109–114CrossRefGoogle Scholar
  16. 16.
    Hopkins PE (2013) Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech Eng 2013:682586CrossRefGoogle Scholar
  17. 17.
    Hopkins PE, Duda JC, Clark SP, Hains CP, Rotter TJ, Phinney LM, Balakrishnan G (2011) Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces. Appl Phys Lett 98:161913CrossRefGoogle Scholar
  18. 18.
    Su Z, Huang L, Liu F, Freedman JP, Porter LM, Davis RF, Malen JA (2012) Layer-by-layer thermal conductivities of the Group III nitride films in blue/green light emitting diodes. Appl Phys Lett 100:201106CrossRefGoogle Scholar
  19. 19.
    Ihlefeld JF, Foley BM, Scrymgeour DA, Michael JR, McKenzie BB, Medlin DL, Wallace M, Trolier-McKinstry S, Hopkins PE (2015) Room temperature voltage tunable thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett 15:1791–1795CrossRefGoogle Scholar
  20. 20.
    Hopkins PE, Adamo C, Ye L, Huey BD, Lee SR, Schlom DG, Ihlefeld JF (2013) Effects of coherent ferroelastic domain walls on the thermal conductivity and kapitza conductance in bismuth ferrite. Appl Phys Lett 102:121903CrossRefGoogle Scholar
  21. 21.
    Mante AJH, Volger J (1966) The thermal conductivity of BaTiO3 in the neighbourhood of its ferroelectric transition temperatures. Phys Lett 24A:139–140Google Scholar
  22. 22.
    Ihlefeld JF, Ginn JC, Shelton DJ, Matias V, Rodriguez MA, Kotula PG, Carroll JF, Boreman GD, Clem PG, Sinclair MB (2010) Crystal coherence length effects on the infrared optical response of MgO thin films. Appl Phys Lett 97:191913CrossRefGoogle Scholar
  23. 23.
    Cahill DG (2004) Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev Sci Instrum 75:5119–5122CrossRefGoogle Scholar
  24. 24.
    Hubbard KJ, Schlom DG (1996) Thermodynamic stability of binary oxides in contact with silicon. J Mater Res 11:2757–2776CrossRefGoogle Scholar
  25. 25.
    Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918:98–100Google Scholar
  26. 26.
    ASTM (2014) Standard test methods for determining average grain size, ASTM International designation: E112–13. ASTM, West Conshohocken, pp 1–28Google Scholar
  27. 27.
    Thomsen C, Strait J, Vardeny Z, Maris HJ, Tauc J, Hauser JJ (1984) Coherent phonon generation and detection by picosecond light pulses. Phys Rev Lett 53:989–992CrossRefGoogle Scholar
  28. 28.
    Thomsen C, Grahn HT, Maris HJ, Tauc J (1986) Surface generation and detection of phonons by picosecond light pulses. Phys Rev B 34:4129–4138CrossRefGoogle Scholar
  29. 29.
    Madelung O, Rossler U, Schulz M (1999) Magnesium oxide (MgO) crystal structure, lattice parameters, thermal expansion. In: Landolt-Börnstein—Group III Condensed matter. Springer, BerlinGoogle Scholar
  30. 30.
    Luxon JT, Montgomery DJ, Summitt R (1969) Effect of particle size and shape on the infrared absorption of magnesium oxides powders. Phys Rev 188:1345–1356CrossRefGoogle Scholar
  31. 31.
    Schmidt Aaron J, Chen Xiaoyuan, Chen Gang (2008) Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectanc. Rev Sci Instrum 79(11):114902CrossRefGoogle Scholar
  32. 32.
    Cahill DG (2004) Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev Sci Instrum 75(12):5119–5122CrossRefGoogle Scholar
  33. 33.
    Cahill DG, Goodson K, Majumdar A (2002) J Heat Transf 124(2):223–241CrossRefGoogle Scholar
  34. 34.
    Hopkins Patrick E, Serrano Justin R, Phinney Leslie M, Kearney Sean P, Grasser Thomas W, Thomas Harris C (2010) Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating. J Heat Transf 132(8):081302CrossRefGoogle Scholar
  35. 35.
    Touloukian YS, Buyco EH (1970) Thermophysical properties of matter—specific heat: metallic elements and alloys. IFI/Plenum, New YorkGoogle Scholar
  36. 36.
    Parks GS, Kelley KK (1926) The heat capacities of some metallic oxides. J Phys Chem 30:47–55CrossRefGoogle Scholar
  37. 37.
    Touloukian Y, Powell R, Ho C, Klemens P (1970) Thermophysical properties of matter—specific heat: nonmetallic solids. IFI/Plenum, New YorkGoogle Scholar
  38. 38.
    Giri A, Niemelä J-P, Tynell T, Gaskins JT, Donovan BF, Karppinen M, Hopkins PE (2016) Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices. Phys Rev B 93:115310CrossRefGoogle Scholar
  39. 39.
    Touloukian YS, Powell RW, Ho CY, Klemens PG (1970) Thermophysical properties of matter—Thermal conductivity: nonmetallic solids. IFI/Plenum, New YorkGoogle Scholar
  40. 40.
    Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131–6140CrossRefGoogle Scholar
  41. 41.
    Sangster MJL, Peckham G, Saunderson DH (1970) Lattice dynamics of magnesium oxide. J Phys C 3:1026–1036CrossRefGoogle Scholar
  42. 42.
    Morelli DT, Slack GA (2006) High lattice thermal conductivity solids. In: Shinde SL, Goela JS (eds) High thermal conductivity materials. Springer, NewYork, pp 37–68CrossRefGoogle Scholar
  43. 43.
    Gorham CS, Hattar K, Cheaito R, Duda JC, Gaskins JT, Beechem TE, Ihlefeld JF, Biedermann LB, Piekos ES, Medlin DL, Hopkins PE (2014) Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces. Phys Rev B 90:024301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kelsey E. Meyer
    • 1
  • Ramez Cheaito
    • 1
    • 2
  • Elizabeth Paisley
    • 3
  • Christopher T. Shelton
    • 4
  • Jeffrey L. Braun
    • 1
  • Jon-Paul Maria
    • 4
  • Jon F. Ihlefeld
    • 3
  • Patrick E. Hopkins
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  3. 3.Electronic, Optical, and Nano Materials DepartmentSandia National LaboratoriesAlbuquerqueUSA
  4. 4.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations