Skip to main content

Thermomechanical properties of zirconium tungstate/hydrogenated nitrile butadiene rubber (HNBR) composites for low-temperature applications

Abstract

Rubber compounds for pressure sealing application typically have inferior dimensional stability with temperature fluctuations compared with their steel counterparts. This effect may result in seal leakage failures when subjected to decreases in temperature. Composites of hydrogenated nitrile butadiene rubber (HNBR) and zirconium tungstate as a negative thermal expansion filler were prepared in order to control the thermal expansivity of the material. The amount of zirconium tungstate (ZrW2O8) was varied in the range of 0 to about 40 vol%. The coefficient of thermal expansion (CTE), bulk modulus, uniaxial extension and compression set properties were measured. The CTE of the ZrW2O8-filled HNBR decreases with the filler content and it is reduced by a factor of 2 at the highest filler concentration used. The filler effect on CTE is found to be stronger when HNBR is below the glass transition temperature. The experimental thermal expansion data of the composites are compared with the theoretical estimates and predictions given by FEA. The effect of ZrW2O8 on the mechanical characteristics and compression set of these materials is also discussed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. Robbins RF, Ohori Y, Weitzel DH (1964) Linear thermal expansion of elastomers in the range 300° to 76°. K. Rubber Chem Technol 37(1):154–168. doi:10.5254/1.3540299

    Article  Google Scholar 

  2. Kraus G, Gruver JT (1970) Thermal expansion, free volume, and molecular mobility in a carbon black-filled elastomer. J Polym Sci A-2 8(4):571–581. doi:10.1002/pol.1970.160080408

    Article  Google Scholar 

  3. Nikiel L, Yang H, Gerspacher M, Hoang G (2004) Electrical resistivity and thermal expansion coefficient of carbon black filled compounds around Tg. Kaut Gummi Kunstst 57(10):538–540

    Google Scholar 

  4. Brazier DW, Nickel GH (1978) Application of TMA for rapid evaluation of low-temperature properties of elastomer vulcanizates. Thermochim Acta 26(1–3):399–413. doi:10.1016/0040-6031(78)80083-5

    Article  Google Scholar 

  5. Robert PC, Glyn JM, Des D, Michael VL (2008) Effects of time temperature and fluids on the long-term service durability of elastomers and elastomeric components. In: Bhowmick Anil K (ed) Current topics in elastomers research. CRC, Boca Raton

    Google Scholar 

  6. Holliday L, Robinson J (1973) Thermal-expansion of composites based on polymers. J Mater Sci 8(3):301–311. doi:10.1007/Bf00550148

    Article  Google Scholar 

  7. Chu CN, Saka N, Suh NP (1987) Negative thermal expansion ceramics: a review. Mater Sci Eng 95:303–308. doi:10.1016/0025-5416(87)90523-4

    Article  Google Scholar 

  8. Miller W, Smith CW, Mackenzie DS, Evans KE (2009) Negative thermal expansion: a review. J Mater Sci 44(20):5441–5451. doi:10.1007/s10853-009-3692-4

    Article  Google Scholar 

  9. Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater. doi:10.1088/1468-6996/13/1/013001

    Google Scholar 

  10. Huang R, Chen Z, Chu X, Wu Z, Li L (2010) Preparation and thermal properties of epoxy composites filled with negative thermal expansion nanoparticles modified by a plasma treatment. J Compos Mater 45(16):1675–1682. doi:10.1177/0021998310385031

    Article  Google Scholar 

  11. Takenaka K, Ichigo M (2014) Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler. Compos Sci Technol 104:47–51

    Article  Google Scholar 

  12. Oka K, Nabetani K, Sakaguchi C, Seki H, Czapski M, Shimakawa Y, Azuma M (2013) Tuning negative thermal expansion in Bi(1-x)Ln(x)NiO(3) (Ln = La, Nd, Eu, Dy). Appl Phys Lett 103(6):3. doi:10.1063/1.4817976

    Article  Google Scholar 

  13. Nabetani K, Muramatsu Y, Oka K, Nakano K, Hojo H, Mizumaki M, Agui A, Higo Y, Hayashi N, Takano M, Azuma M (2015) Suppression of temperature hysteresis in negative thermal expansion compound BiNi1-x Fe x O3 and zero-thermal expansion composite. Appl Phys Lett 106(6):5. doi:10.1063/1.4908258

    Article  Google Scholar 

  14. Young L, Alvarez PT, Liu H (2016) Lind C (2016) extremely low temperature crystallization in the A2M3O12 family of negative thermal expansion materials. Eur J Inorg Chem 8:1251–1256. doi:10.1002/ejic.201501420

    Article  Google Scholar 

  15. Soares AR, Pontón PI, Mancic L, d’Almeida JRM, Romao CP, White MA, Marinkovic BA (2014) Al2Mo3O12/polyethylene composites with reduced coefficient of thermal expansion. J Mater Sci 49(22):7870–7882. doi:10.1007/s10853-014-8498-3

    Article  Google Scholar 

  16. Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272(5258):90–92. doi:10.1126/science.272.5258.90

    Article  Google Scholar 

  17. Shi JD, Pu ZJ, Wu KH, Larkins G (1996) Composite materials with adjustable thermal expansion for electronic applications. MRS Online Proc Libr 445:229–234. doi:10.1557/PROC-445-229

    Article  Google Scholar 

  18. Neely LA, Kochergin V, See EM, Robinson HD (2014) Negative thermal expansion in a zirconium tungstate/epoxy composite at low temperatures. J Mater Sci 49(1):392–396. doi:10.1007/s10853-013-7716-8

    Article  Google Scholar 

  19. Wu H, Rogalski M, Kessler MR (2013) Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity. ACS Appl Mater Interfaces 5(19):9478–9487. doi:10.1021/am402242g

    Article  Google Scholar 

  20. Chu XX, Wu ZX, Huang CJ, Huang RJ, Zhou Y, Li LF (2012) ZrW2O8-doped epoxy as low thermal expansion insulating materials for superconducting feeder system. Cryogenics 52(12):638–641. doi:10.1016/j.cryogenics.2012.04.016

    Article  Google Scholar 

  21. Yamashina N, Isobe T, Ando S (2012) Low thermal expansion composites prepared from polyimide and ZrW2O8 particles with negative thermal expansion. J Photopolym Sci Technol 25(3):385–388. doi:10.2494/photopolymer.25.385

    Article  Google Scholar 

  22. Lind C, Coleman MR, Kozy LC, Sharma GR (2011) Zirconium tungstate/polymer nanocomposites: challenges and opportunities. Phys Status Solidi B 248(1):123–129. doi:10.1002/pssb.201083967

    Article  Google Scholar 

  23. Sullivan LM, Lukehart CM (2005) Zirconium tungstate (ZrW2O8)/polyimide nanocomposites exhibiting reduced coefficient of thermal expansion. Chem Mater 17(8):2136–2141. doi:10.1021/cm0482737

    Article  Google Scholar 

  24. Gao X, Coleman MR, Lind C (2012) Impact of negative thermal expansion material ZrW2O8 in polycarbonate composites. In: International SAMPE technical conference

  25. Tani J, Kimura H, Hirota K, Kido H (2007) Thermal expansion and mechanical properties of phenolic resin/ZrW2O8 composites. J Appl Polym Sci 106(5):3343–3347. doi:10.1002/app.27025

    Article  Google Scholar 

  26. Wu H, Badrinarayanan P, Kessler MR (2012) Effect of hydrothermal synthesis conditions on the morphology and negative thermal expansivity of zirconium tungstate nanoparticles. J Am Ceram Soc 95(11):3643–3650. doi:10.1111/j.1551-2916.2012.05457.x

    Article  Google Scholar 

  27. Shubin SN, Freidin AB, Akulichev AG (2016) Elastomer composites based on filler with negative thermal expansion coefficient in sealing application. Arch Appl Mech 86(1–2):351–360. doi:10.1007/s00419-016-1120-1

    Article  Google Scholar 

  28. Alcock B, Jørgensen JK (2015) The mechanical properties of a model hydrogenated nitrile butadiene rubber (HNBR) following simulated sweet oil exposure at elevated temperature and pressure. Polym Test 46:50–58. doi:10.1016/j.polymertesting.2015.06.010

    Article  Google Scholar 

  29. Alcock B, Peters TA, Gaarder RH, Jørgensen JK (2015) The effect of hydrocarbon ageing on the mechanical properties, apparent crosslink density and CO2 diffusion of a hydrogenated nitrile butadiene rubber (HNBR). Polym Test 47:22–29. doi:10.1016/j.polymertesting.2015.07.007

    Article  Google Scholar 

  30. Stanojevic M, Lewis GK (1983) A comparison of two test methods for determining elastomer physical properties. Polym Test 3(3):183–195. doi:10.1016/0142-9418(83)90004-1

    Article  Google Scholar 

  31. Karch C (2014) Micromechanical analysis of thermal expansion coefficients. Modeling Numer Simul Mater Sci 4:104–118. doi:10.4236/mnsms.2014.43012

    Google Scholar 

  32. Barbero EJ (2013) Finite element analysis of composite materials using Abaqus Composite materials, design and analysis. CRC, Boca Raton

    Google Scholar 

  33. Ogden RW (1997) Non-linear elastic deformations. Dover, Mineola

    Google Scholar 

  34. Horgan CO, Murphy JG (2009) On the volumetric part of strain-energy functions used in the constitutive modeling of slightly compressible solid rubbers. Int J Solids Struct 46(16):3078–3085. doi:10.1016/j.ijsolstr.2009.04.007

    Article  Google Scholar 

  35. Yeoh OH (2012) Developments in finite element analysis. In: Gent Alan N (ed) Engineering with rubber, 3rd edn. Carl HanserKG, Munich, pp 345–364. doi:10.3139/9783446428713.010

    Chapter  Google Scholar 

  36. Drymiotis FR, Ledbetter H, Betts JB, Kimura T, Lashley JC, Migliori A, Ramirez AP, Kowach GR, Van Duijn J (2004) Monocrystal elastic constants of the negative-thermal-expansion compound zirconium tungstate. Phys Rev Lett 93(2):025502. doi:10.1103/PhysRevLett.93.025502

    Article  Google Scholar 

  37. Haward RN (1973) The physics of glassy polymers. Applied Science, Materials science series, London

    Book  Google Scholar 

  38. Kerner EH (1956) The Elastic and Thermo-elastic Properties of Composite Media. Proc Phys Soc Lond, Sect B 69(8):808

    Article  Google Scholar 

  39. Schapery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2(3):380–404. doi:10.1177/002199836800200308

    Article  Google Scholar 

  40. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10(4):343–352. doi:10.1016/0022-5096(62)90005-4

    Article  Google Scholar 

  41. Van Der Wal CW, Bree HW, Schwarzl FR (1965) Mechanical properties of highly filled elastomers. II. Relationship between filler characteristics, thermal expansion, and bulk moduli. J Appl Polym Sci 9(6):2143–2166. doi:10.1002/app.1965.070090611

    Article  Google Scholar 

  42. Levin VM (1967) On thermal expansion coefficients of heterogeneous materials (in Russian). Mech Solids 2(1):88–94

    Google Scholar 

  43. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater 21(5):571–574. doi:10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  44. Mason P (1964) Thermal expansion and viscoelasticity of rubber in relation to crosslinking and molecular packing. Polymer 5(12):625–636. doi:10.1016/0032-3861(64)90212-5

    Article  Google Scholar 

  45. Ciesielski A (1999) An introduction to rubber technology. Rapra Technology Ltd., Shawbury

    Google Scholar 

  46. Turland D (2010) Do compression set results measure up? Seal Technol 12:11–13. doi:10.1016/S1350-4789(10)70589-4

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the collaborative project “Thermo Responsive Elastomer Composites for cold climate application” with the industrial partners FMC Kongsberg Subsea AS, STATOIL Petroleum AS, the Norwegian University of Science and Technology (NTNU) and the research institute SINTEF Materials and Chemistry. The authors would like to express their thanks for the financial support by the Research Council of Norway (Project 234115 in the Petromaks2 programme). The authors are also grateful to Huiting Jin, Christelle Denonville and Alaa Mourad at SINTEF Materials and Chemistry for performing the DSC, particle size distribution and mechanical tests reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton G. Akulichev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akulichev, A.G., Alcock, B., Tiwari, A. et al. Thermomechanical properties of zirconium tungstate/hydrogenated nitrile butadiene rubber (HNBR) composites for low-temperature applications. J Mater Sci 51, 10714–10726 (2016). https://doi.org/10.1007/s10853-016-0236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0236-6

Keywords

  • Bulk Modulus
  • Representative Volume Element
  • Rubber Compound
  • Negative Thermal Expansion
  • Strain Energy Density Function