Journal of Materials Science

, Volume 51, Issue 22, pp 10048–10058 | Cite as

Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics

  • Qaisar Khushi Muhammad
  • Moaz Waqar
  • Muhammad Asif RafiqEmail author
  • Muhammad Nadeem Rafiq
  • Muhammad Usman
  • Muhammad Sabieh Anwar
Original Paper


Polycrystalline lead-free BaZr0.15Ti0.85O3 ceramics doped with ZnO (0 ≤ x ≤ 2 wt%) were produced via mixed oxide solid-state reaction method. X-ray diffraction confirmed the presence of a single phase having tetragonal symmetry and having space group P4 mm. Scanning electron microscopy confirmed an increase in the density of microstructure and enlargement of grains with increase in ZnO concentration. Complex impedance spectroscopy revealed non-Debye type relaxation phenomenon. It was observed that an increase in the resistance of grain boundaries and decrease in that of grain interior (bulk) occurred with an increase in temperature. Relaxation time decreased with increase in temperature for both grain boundaries and grain interior. Understandings obtained from this work might be helpful in engineering the microstructure of BZT-based ceramics for useful applications.


Oxygen Vacancy Cole Plot Dynamic Random Access Memory Space Charge Polarization BaTiO3 Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Randall C, Kelnberger A, Yang G, Eitel R, Shrout T (2005) High strain piezoelectric multilayer actuators—a material science and engineering challenge. J Electroceram 14:177–191CrossRefGoogle Scholar
  2. 2.
    Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys: Condens Matter 15:R367Google Scholar
  3. 3.
    Yamamoto T (1996) Ferroelectric properties of the PbZrO3–PbTiO3 system. Jpn J Appl Phys 35:5104CrossRefGoogle Scholar
  4. 4.
    Rafiq MA, Rafiq MN, Saravanan KV (2015) Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram Int 41:11436–11444CrossRefGoogle Scholar
  5. 5.
    Yu Z, Ang C, Guo R, Bhalla A (2002) Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics. J Appl Phys 92:1489–1493CrossRefGoogle Scholar
  6. 6.
    Jaffe B, Cook W, Jaffe H (eds) (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  7. 7.
    Wang Y, Li L, Qi J, Gui Z (2002) Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics. Ceram Int 28:657–661CrossRefGoogle Scholar
  8. 8.
    Qi JQ, Wang XH, Zhang H, Zou H, Wang ZB, Qi XW et al (2014) Direct synthesis of barium zirconate titanate (BZT) nanoparticles at room temperature and sintering of their ceramics at low temperature. Ceram Int 40:2747–2750CrossRefGoogle Scholar
  9. 9.
    Weir RD, Nelson CW (eds) (2006) Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries. Google PatentsGoogle Scholar
  10. 10.
    Qi JQ, Liu BB, Tian HY, Zou H, Yue ZX, Li LT (2012) Dielectric properties of barium zirconate titanate (BZT) ceramics tailored by different donors for high voltage applications. Solid State Sci 14:1520–1524CrossRefGoogle Scholar
  11. 11.
    Hennings D, Schnell A, Simon G (1982) Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics. J Am Ceram Soc 65:539–544CrossRefGoogle Scholar
  12. 12.
    Tang X, Wang J, Wang X, Chan H (2004) Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics. Solid State Commun 131:163–168CrossRefGoogle Scholar
  13. 13.
    Park S (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811CrossRefGoogle Scholar
  14. 14.
    Coondoo I, Panwar N, Rafiq MA, Puli VS, Rafiq MN, Katiyar RS (2014) Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3 [R = La, Nd] ceramics. Ceram Int 40:9895–9902CrossRefGoogle Scholar
  15. 15.
    Balakumar S, Ilangovan R, Subramanian C, Ramasamy P (1993) Growth kinetics of BaTiO3 and Ba1-xCaxTiO3 single crystals. J Mater Sci Lett 12:20–22Google Scholar
  16. 16.
    Kucheiko S, Kim H-J, Yoon S-J, Jung H-J (1997) Effect of ZnO additive on microstructure and microwave dielectric properties of CaTi1-x(Fe0.5Nb0.5)xO3 ceramics. Jpn J Appl Phys 36:198CrossRefGoogle Scholar
  17. 17.
    Yoon K, Kim J, Jo K (1989) Dielectric properties of barium titanate with Sb2O3 and ZnO. J Mater Sci Lett 8:153–156CrossRefGoogle Scholar
  18. 18.
    Caballero A, Fernandez J, Moure C, Duran P (1997) ZnO-doped BaTiO3: microstructure and electrical properties. J Eur Ceram Soc 17:513–523CrossRefGoogle Scholar
  19. 19.
    Caballero AC, Fernandez JF, Moure C, Duran P, Chiang YM (1998) Grain growth control and dopant distribution in ZnO-doped BaTiO3. J Am Ceram Soc 81:939–944CrossRefGoogle Scholar
  20. 20.
    Webber KG, Zuo R, Lynch CS (2008) Ceramic and single-crystal (1–x)PMN–xPT constitutive behavior under combined stress and electric field loading. Acta Mater 56:1219–1227CrossRefGoogle Scholar
  21. 21.
    Kobor D, Guiffard B, Lebrun L, Hajjaji A, Guyomar D (2007) Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5 PT single crystals. J Phys D Appl Phys 40:2920CrossRefGoogle Scholar
  22. 22.
    Sinclair DC, West AR (1989) Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 66:3850–3856CrossRefGoogle Scholar
  23. 23.
    Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Impedance spectroscopy: theory, experiment, and applications, 2nd edn. pp 1–26Google Scholar
  24. 24.
    Suchanicz J (1998) The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater Sci Eng B 55:114–118CrossRefGoogle Scholar
  25. 25.
    Puli VS, Pradhan DK, Riggs BC, Adireddy S, Katiyar RS, Chrisey DB (2014) Synthesis and characterization of lead-free ternary component BST–BCT–BZT ceramic capacitors. J Adv Dielectr 4:1450014CrossRefGoogle Scholar
  26. 26.
    Mascot M, Fasquelle D, Carru J-C (2011) Very high tunability of BaSnxTi1-xO3 ferroelectric thin films deposited by sol-gel. Funct Mater Lett 4:49–52CrossRefGoogle Scholar
  27. 27.
    Wang Y, Li L, Qi J, Gui Z (2002) Frequency response of ZnO-doped BaZrxTi1−xO3 ceramics. Mater Chem Phys 76:250–254CrossRefGoogle Scholar
  28. 28.
    Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, vol 32. pp 751–767Google Scholar
  29. 29.
    Rafiq M, Costa M, Vilarinho P (eds) (2013) Science of advanced materials. Accepted 2013Google Scholar
  30. 30.
    Sen S, Choudhary R (2004) Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater Chem Phys 87:256–263CrossRefGoogle Scholar
  31. 31.
    Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267: 673–679, 06/23/printGoogle Scholar
  32. 32.
    Rafiq MA, Tkach A, Costa ME, Vilarinho PM (2015) Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys Chem Chem Phys 17:24403–24411CrossRefGoogle Scholar
  33. 33.
    Srinivas K, James A (1999) Dielectric characterization of polycrystalline Sr2Bi4Ti5O18. J Appl Phys 86:3885–3889CrossRefGoogle Scholar
  34. 34.
    Peláiz-Barranco A, Guerra J, Lopez-Noda R, Araujo E (2008) Ionized oxygen vacancy-related electrical conductivity in (Pb(1−x)Lax)(Zr0.90Ti0. 10)1−x/4O3 ceramics. J Phys D Appl Phys 41:215503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qaisar Khushi Muhammad
    • 1
  • Moaz Waqar
    • 1
  • Muhammad Asif Rafiq
    • 1
  • Muhammad Nadeem Rafiq
    • 2
  • Muhammad Usman
    • 3
  • Muhammad Sabieh Anwar
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of Engineering and TechnologyLahorePakistan
  2. 2.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  3. 3.Department of Physics, Syed Babar Ali School of Science and EngineeringLahore University of Management Sciences (LUMS)LahorePakistan

Personalised recommendations