Skip to main content
Log in

Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline lead-free BaZr0.15Ti0.85O3 ceramics doped with ZnO (0 ≤ x ≤ 2 wt%) were produced via mixed oxide solid-state reaction method. X-ray diffraction confirmed the presence of a single phase having tetragonal symmetry and having space group P4 mm. Scanning electron microscopy confirmed an increase in the density of microstructure and enlargement of grains with increase in ZnO concentration. Complex impedance spectroscopy revealed non-Debye type relaxation phenomenon. It was observed that an increase in the resistance of grain boundaries and decrease in that of grain interior (bulk) occurred with an increase in temperature. Relaxation time decreased with increase in temperature for both grain boundaries and grain interior. Understandings obtained from this work might be helpful in engineering the microstructure of BZT-based ceramics for useful applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Randall C, Kelnberger A, Yang G, Eitel R, Shrout T (2005) High strain piezoelectric multilayer actuators—a material science and engineering challenge. J Electroceram 14:177–191

    Article  Google Scholar 

  2. Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys: Condens Matter 15:R367

    Google Scholar 

  3. Yamamoto T (1996) Ferroelectric properties of the PbZrO3–PbTiO3 system. Jpn J Appl Phys 35:5104

    Article  Google Scholar 

  4. Rafiq MA, Rafiq MN, Saravanan KV (2015) Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram Int 41:11436–11444

    Article  Google Scholar 

  5. Yu Z, Ang C, Guo R, Bhalla A (2002) Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics. J Appl Phys 92:1489–1493

    Article  Google Scholar 

  6. Jaffe B, Cook W, Jaffe H (eds) (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  7. Wang Y, Li L, Qi J, Gui Z (2002) Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics. Ceram Int 28:657–661

    Article  Google Scholar 

  8. Qi JQ, Wang XH, Zhang H, Zou H, Wang ZB, Qi XW et al (2014) Direct synthesis of barium zirconate titanate (BZT) nanoparticles at room temperature and sintering of their ceramics at low temperature. Ceram Int 40:2747–2750

    Article  Google Scholar 

  9. Weir RD, Nelson CW (eds) (2006) Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries. Google Patents

  10. Qi JQ, Liu BB, Tian HY, Zou H, Yue ZX, Li LT (2012) Dielectric properties of barium zirconate titanate (BZT) ceramics tailored by different donors for high voltage applications. Solid State Sci 14:1520–1524

    Article  Google Scholar 

  11. Hennings D, Schnell A, Simon G (1982) Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics. J Am Ceram Soc 65:539–544

    Article  Google Scholar 

  12. Tang X, Wang J, Wang X, Chan H (2004) Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics. Solid State Commun 131:163–168

    Article  Google Scholar 

  13. Park S (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  Google Scholar 

  14. Coondoo I, Panwar N, Rafiq MA, Puli VS, Rafiq MN, Katiyar RS (2014) Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3 [R = La, Nd] ceramics. Ceram Int 40:9895–9902

    Article  Google Scholar 

  15. Balakumar S, Ilangovan R, Subramanian C, Ramasamy P (1993) Growth kinetics of BaTiO3 and Ba1-xCaxTiO3 single crystals. J Mater Sci Lett 12:20–22

    Google Scholar 

  16. Kucheiko S, Kim H-J, Yoon S-J, Jung H-J (1997) Effect of ZnO additive on microstructure and microwave dielectric properties of CaTi1-x(Fe0.5Nb0.5)xO3 ceramics. Jpn J Appl Phys 36:198

    Article  Google Scholar 

  17. Yoon K, Kim J, Jo K (1989) Dielectric properties of barium titanate with Sb2O3 and ZnO. J Mater Sci Lett 8:153–156

    Article  Google Scholar 

  18. Caballero A, Fernandez J, Moure C, Duran P (1997) ZnO-doped BaTiO3: microstructure and electrical properties. J Eur Ceram Soc 17:513–523

    Article  Google Scholar 

  19. Caballero AC, Fernandez JF, Moure C, Duran P, Chiang YM (1998) Grain growth control and dopant distribution in ZnO-doped BaTiO3. J Am Ceram Soc 81:939–944

    Article  Google Scholar 

  20. Webber KG, Zuo R, Lynch CS (2008) Ceramic and single-crystal (1–x)PMN–xPT constitutive behavior under combined stress and electric field loading. Acta Mater 56:1219–1227

    Article  Google Scholar 

  21. Kobor D, Guiffard B, Lebrun L, Hajjaji A, Guyomar D (2007) Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5 PT single crystals. J Phys D Appl Phys 40:2920

    Article  Google Scholar 

  22. Sinclair DC, West AR (1989) Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 66:3850–3856

    Article  Google Scholar 

  23. Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Impedance spectroscopy: theory, experiment, and applications, 2nd edn. pp 1–26

  24. Suchanicz J (1998) The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater Sci Eng B 55:114–118

    Article  Google Scholar 

  25. Puli VS, Pradhan DK, Riggs BC, Adireddy S, Katiyar RS, Chrisey DB (2014) Synthesis and characterization of lead-free ternary component BST–BCT–BZT ceramic capacitors. J Adv Dielectr 4:1450014

    Article  Google Scholar 

  26. Mascot M, Fasquelle D, Carru J-C (2011) Very high tunability of BaSnxTi1-xO3 ferroelectric thin films deposited by sol-gel. Funct Mater Lett 4:49–52

    Article  Google Scholar 

  27. Wang Y, Li L, Qi J, Gui Z (2002) Frequency response of ZnO-doped BaZrxTi1−xO3 ceramics. Mater Chem Phys 76:250–254

    Article  Google Scholar 

  28. Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, vol 32. pp 751–767

  29. Rafiq M, Costa M, Vilarinho P (eds) (2013) Science of advanced materials. Accepted 2013

  30. Sen S, Choudhary R (2004) Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater Chem Phys 87:256–263

    Article  Google Scholar 

  31. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267: 673–679, 06/23/print

  32. Rafiq MA, Tkach A, Costa ME, Vilarinho PM (2015) Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys Chem Chem Phys 17:24403–24411

    Article  Google Scholar 

  33. Srinivas K, James A (1999) Dielectric characterization of polycrystalline Sr2Bi4Ti5O18. J Appl Phys 86:3885–3889

    Article  Google Scholar 

  34. Peláiz-Barranco A, Guerra J, Lopez-Noda R, Araujo E (2008) Ionized oxygen vacancy-related electrical conductivity in (Pb(1−x)Lax)(Zr0.90Ti0. 10)1−x/4O3 ceramics. J Phys D Appl Phys 41:215503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Rafiq.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, Q.K., Waqar, M., Rafiq, M.A. et al. Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J Mater Sci 51, 10048–10058 (2016). https://doi.org/10.1007/s10853-016-0231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0231-y

Keywords

Navigation