Skip to main content

Advertisement

Log in

Elaboration of light composite materials based on alginate and algal biomass for flame retardancy: preliminary tests

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alginate-based composites prepared by incorporation of bentonite into alginate or algal hydrogels show promising properties in terms of thermal degradation (mass-loss rate curves under epiradiator irradiation). They can be used as coating agent or as structured materials. Alginates characterized by high guluronic acid content are more efficient for retarding the ignition of tested materials after calcium gelation. Brown seaweed can be directly used for preparing composite blocks with clay; a pretreatment for partial extraction of alginate was introduced in the preparation of the composite material. In order to achieve a better control of drying procedures (with low apparent density, limited shrinking), another kind of composite was successfully elaborated by the incorporation of freeze-dried alginate/bentonite beads into an alginate matrix. Algal biomass (a renewable resource, which requires less processing than when using pure alginate) can be used for the green manufacturing of promising flame-retardant materials (associated to bentonite). Freeze-dried alginate/bentonite beads incorporated in alginate hydrogels show interesting thermal degradation properties allied to low-density characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. An B, Lee H, Lee S, Lee S-H, Choi J-W (2015) Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption. J Hazard Mater 298:11. doi:10.1016/j.jhazmat.2015.05.005

    Article  Google Scholar 

  2. Hong H-J, Ryu J, Park I-S, Ryu T, Chung K-S, Kim B-G (2016) Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. J Environ Manage 165:263. doi:10.1016/j.jenvman.2015.09.040

    Article  Google Scholar 

  3. Xu M, Gagne-Bourque F, Dumont M-J, Jabaji S (2016) Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. J Food Eng 168:52. doi:10.1016/j.jfoodeng.2015.07.021

    Article  Google Scholar 

  4. Hsu F-Y, Wang Z-Y, Chang B-V (2013) Use of microcapsules with electrostatically immobilized bacterial cells or enzyme extract to remove nonylphenol in wastewater sludge. Chemosphere 91:745. doi:10.1016/j.chemosphere.2013.02.019

    Article  Google Scholar 

  5. Nayak AK, Pal D, Santra K (2016) Swelling and drug release behavior of metformin HCl-loaded tamarind seed polysaccharide-alginate beads. Int J Biol Macromol 82:1023. doi:10.1016/j.ijbiomac.2015.10.027

    Article  Google Scholar 

  6. Guibal E, Vincent T, Jouannin C (2009) Immobilization of extractants in biopolymer capsules for the synthesis of new resins: a focus on the encapsulation of tetraalkyl phosphonium ionic liquids. J Mater Chem 19:8515. doi:10.1039/b911318e

    Article  Google Scholar 

  7. Krys P, Testa F, Trochimczuk A et al (2013) Encapsulation of ammonium molybdophosphate and zirconium phosphate in alginate matrix for the sorption of rubidium(I). J Colloid Interface Sci 409:141. doi:10.1016/j.jcis.2013.07.046

    Article  Google Scholar 

  8. Vincent T, Taulemesse J-M, Dauvergne A, Chanut T, Testa F, Guibal E (2014) Thallium(I) sorption using Prussian blue immobilized in alginate capsules. Carbohydr Polym 99:517. doi:10.1016/j.carbpol.2013.08.076

    Article  Google Scholar 

  9. Bertagnolli C, Grishin A, Vincent T, Guibal E (2015) Synthesis and application of a novel sorbent (tannic acid-grafted-polyethyleneimine encapsulated in alginate beads) for heavy metal removal. Sep Sci Technol 50:2897. doi:10.1080/01496395.2015.1085404

    Google Scholar 

  10. Gao W-W, Zhang G-X, Zhang F-X (2015) Enhancement of flame retardancy of cotton fabrics by grafting a novel organic phosphorous-based flame retardant. Cellulose 22:2787. doi:10.1007/s10570-015-0641-z

    Article  Google Scholar 

  11. Pan H, Wang W, Pan Y et al (2015) Construction of layer-by-layer assembled chitosan/titanate nanotubes based nanocoating on cotton fabrics: flame retardant performance and combustion behavior. Cellulose 22:911. doi:10.1007/s10570-014-0536-4

    Article  Google Scholar 

  12. Simoncic B, Hadzic S, Vasiljevic J et al (2014) Tailoring of multifunctional cellulose fibres with “lotus effect” and flame retardant properties. Cellulose 21:595. doi:10.1007/s10570-013-0103-4

    Article  Google Scholar 

  13. Haile M, Fomete S, Lopez ID, Grunlan JC (2016) Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam. J Mater Sci 51:375. doi:10.1007/s10853-015-9258-8

    Article  Google Scholar 

  14. Holder KM, Huff ME, Cosio MN, Grunlan JC (2015) Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J Mater Sci 50:2451. doi:10.1007/s10853-014-8800-4

    Article  Google Scholar 

  15. Hornsby PR, Cusack PA, Cross M, Toth A, Zelei B, Marosi G (2003) Zinc hydroxystannate-coated metal hydroxide fire retardants: fire performance and substrate-coating interactions. J Mater Sci 38:2893. doi:10.1023/a:1024444804764

    Article  Google Scholar 

  16. Liu Y, Zhao J-C, Zhang C-J, Guo Y, Zhu P, Wang D-Y (2016) Effect of manganese and cobalt ions on flame retardancy and thermal degradation of bio-based alginate films. J Mater Sci 51:1052. doi:10.1007/s10853-015-9435-9

    Article  Google Scholar 

  17. Basak S, Samanta KK, Chattopadhyay SK, Narkar R (2015) Thermally stable cellulosic paper made using banana pseudostem sap, a wasted by-product. Cellulose 22:2767. doi:10.1007/s10570-015-0662-7

    Article  Google Scholar 

  18. Zhang H, Chang Z, Qian X, An X (2014) In situ preparation, characterization and performance of magnesium carbonate whiskers/cellulose fibers hybrid paper. Cellulose 21:4633. doi:10.1007/s10570-014-0462-5

    Article  Google Scholar 

  19. Alongi J, Han ZD, Bourbigot S (2015) Intumescence: tradition versus novelty. a comprehensive review. Prog Polym Sci 51:28. doi:10.1016/j.progpolymsci.2015.04.010

    Article  Google Scholar 

  20. Idumah CI, Hassan A (2016) Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Rev Chem Eng 32:115. doi:10.1515/revce-2015-0017

    Google Scholar 

  21. Zhang J, Ji Q, Shen X, Xia Y, Tan L, Kong Q (2011) Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polym Degrad Stab 96:936. doi:10.1016/j.polymdegradstab.2011.01.029

    Article  Google Scholar 

  22. C Zhang, P Zhu, J Zhao, N Zhang (2012) in Shao JH, Fan QG (eds)Eco-Dyeing, Finishing and Green Chemistry

  23. Liu Y, Zhao J, Zhang C, Ji H, Zhu P (2014) The flame retardancy, thermal properties, and degradation mechanism of zinc alginate films. J Macromol Sci Phys 53:1074. doi:10.1080/00222348.2014.891169

    Article  Google Scholar 

  24. Tian G, Ji Q, Xu D, Tan L, Quan F, Xia Y (2013) The effect of zinc ion content on flame retardance and thermal degradation of alginate fibers. Fibers Polym 14:767. doi:10.1007/s12221-013-0767-2

    Article  Google Scholar 

  25. Zhang J, Ji Q, Wang F, Tan L, Xia Y (2012) Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polym Degrad Stab 97:1034. doi:10.1016/j.polymdegradstab.2012.03.004

    Article  Google Scholar 

  26. Chen H-B, Wang Y-Z, Sánchez-Soto M, Schiraldi DA (2012) Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay. Polymer 53:5825. doi:10.1016/j.polymer.2012.10.029

    Article  Google Scholar 

  27. Shang K, Liao W, Wang J, Wang Y-T, Wang Y-Z, Schiraldi DA (2016) Nonflammable alginate nanocomposite aerogels prepared by a simple freeze-drying and post-cross-linking method. ACS Appl Mater Interfaces 8:643. doi:10.1021/acsami.5b09768

    Article  Google Scholar 

  28. Wang W, Pan H, Shi Y et al (2015) Sandwichlike coating consisting of alternating montmorillonite and beta-FeOOH for reducing the fire hazard of fexible polyurethane foam. ACS Sustainable Chem Eng 3:3214. doi:10.1021/acssuschemeng.5b00805

    Article  Google Scholar 

  29. Kusuktham B, Prasertgul J, Srinun P (2014) Morphology and property of calcium silicate encapsulated with alginate beads. Silicon 6:191. doi:10.1007/s12633-013-9173-z

    Article  Google Scholar 

  30. Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS Appl Mater Interfaces 7:101. doi:10.1021/am507045g

    Article  Google Scholar 

  31. Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrolysis 71:27. doi:10.1016/s0165-2370(03)00096-2

    Article  Google Scholar 

  32. Huggett C (1980) Estimation of rate of heat release by means of oxygen-consumption measurements. Fire Mater 4:61. doi:10.1002/fam.810040202

    Article  Google Scholar 

  33. Quong D, Neufeld RJ, Skjak-Braek G, Poncelet D (1998) External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation. Biotechnol Bioeng 57:438

    Article  Google Scholar 

  34. Iijima M, Hatakeyama T, Nakamura K, Hatakeyama H (2002) Thermomechanical analysis of calcium alginate hydrogels in water. J Therm Anal Calorim 70:807. doi:10.1023/a:1022252102869

    Article  Google Scholar 

  35. Simpson NE, Stabler CL, Simpson CP, Sambanis A, Constantinidis L (2004) The role of the CaCl2-guluronic acid interaction on alginate encapsulated beta TC3 cells. Biomaterials 25:2603. doi:10.1016/j.biomaterials.2003.09.046

    Article  Google Scholar 

  36. Funami T, Fang Y, Noda S et al (2009) Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca(2+) binding. Food Hydrocolloids 23:1746. doi:10.1016/j.foodhyd.2009.02.014

    Article  Google Scholar 

  37. Wandrey C, Espinosa D, Rehor A, Hunkeler D (2003) Influence of alginate characteristics on the properties of multi-component microcapsules. J Microencapsulation 20:597. doi:10.1080/0265204031000148022

    Article  Google Scholar 

  38. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1: Structure, gelation rate and mechanical properties. Biomaterials 22:511. doi:10.1016/S0142-9612(00)00201-5

    Article  Google Scholar 

  39. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrolysis 107:323. doi:10.1016/j.jaap.2014.03.017

    Article  Google Scholar 

  40. Manns D, Deutschle AL, Saake B, Meyer AS (2014) Methodology for quantitative determination of the carbohydrate composition of brown seaweeds (Laminariaceae). RSC Adv 4:25736. doi:10.1039/c4ra03537b

    Article  Google Scholar 

  41. Schiener P, Black KD, Stanley MS, Green DH (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363. doi:10.1007/s10811-014-0327-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guibal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gady, O., Poirson, M., Vincent, T. et al. Elaboration of light composite materials based on alginate and algal biomass for flame retardancy: preliminary tests. J Mater Sci 51, 10035–10047 (2016). https://doi.org/10.1007/s10853-016-0230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0230-z

Keywords

Navigation