Skip to main content
Log in

Enhanced electrochemical performance of LiFePO4 cathode with carbon-TiO2 hybrid coating

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, hydrothermal method was conducted to synthesize LiFePO4 raw material. Carbon and TiO2 hybrid coating was prepared on the surface of LiFePO4 through sol–gel method, the tiny TiO2 particles were dispersed homogeneously on the surface and its size is about 2–4 nm. The rate performance testing proved that appropriate content TiO2 in the hybrid coating could obviously improve the rate performance of LiFePO4. The samples with 0.2 wt% (nominal) TiO2 particles in the hybrid coating owned the optimal rate performance at 0.5C, 1C, 3C and 5C, respectively. The reason was that TiO2 particles enlarged the interface in coating layer. This hybrid structure can provide more reaction sites for Li+ ion insertion/extraction. Another advantage of this carbon and TiO2 hybrid coating is that it does not need to strictly limit the content of carbon in the coating, which is very useful for scale production of carbon coating process for LiFePO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswahi KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi:10.1149/1.1837571

    Article  Google Scholar 

  2. Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) Comparative kinetic study of olivine LixMPO4(M = Fe, Mn). J Electrochem Soc 151:A1352–A1356. doi:10.1149/1.1773731

    Article  Google Scholar 

  3. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M = Mn, Fe Co, Ni) olivine materials. Electrochem Solid-State Lett 7:A30–A32. doi:10.1149/1.1633511

    Article  Google Scholar 

  4. Bewlay SL, Konstontinov K, Wang GX, Dou SX, Liu HK (2004) Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater Lett 58:1788–1791. doi:10.1016/j.matlet.2003.11.008

    Article  Google Scholar 

  5. Li L, Li X, Wang Z, Wu L, Zheng J, Guo H (2009) Stable cycle-life properties of Ti-doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method. J Phys Chem Sol 70:238–242. doi:10.1016/j.jpcs.2008.10.012

    Article  Google Scholar 

  6. Cui Y, Zhao X, Guo R (2010) Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating. J Alloys Compd 490:236–240. doi:10.1016/j.jallcom.2009.09.165

    Article  Google Scholar 

  7. Zhao SX, Ding H, Wang YC, Li BH, Nan CW (2013) Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon. J Alloys Compd 566:206–211. doi:10.1016/j.jallcom.2013.03.041

    Article  Google Scholar 

  8. Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4:A170–A172. doi:10.1149/1.1396695

    Article  Google Scholar 

  9. Mi CH, Cao GS, Zhao XB (2005) Low-cost one-step process for synthesis of carbon-coated LiFePO4 cathode. Mater Lett 59:127–130. doi:10.1016/j.matlet.2004.07.051

    Article  Google Scholar 

  10. Yun NJ, Ha HW, Jeong KH, Park HY, Kim K (2006) Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. J Power Sources 160:1361–1368. doi:10.1016/j.jpowsour.2006.02.097

    Article  Google Scholar 

  11. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607–A610. doi:10.1149/1.1860492

    Article  Google Scholar 

  12. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128. doi:10.1038/nmat732

    Article  Google Scholar 

  13. Cho YD, Fey GT, Kao HM (2009) The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J Power Sources 189:256–262. doi:10.1016/j.jpowsour.2008.09.053

    Article  Google Scholar 

  14. Geng WT (2013) Carbon coating of LiFePO4 can be strengthened by Sc and Ti. J Phys Chem C 117:276–279. doi:10.1021/jp308903v

    Article  Google Scholar 

  15. Yang XL, Peng G, Zhang LL, Liang G, Duan S, Huang YH, Ignatov A, Croft MC (2012) Enhanced electrochemical performance of LiFePO4 cathode material promoted by CdO and carbon co-coating. J Electrochem Soc 159:A2096–A2099. doi:10.1149/2.014301jes

    Article  Google Scholar 

  16. Ma Z, Peng Y, Wang G, Fan Y, Song J, Liu T, Qin X, Shao G (2015) Enhancement of electrochemical performance for LiFePO4 cathodes via hybrid coating with electron conductor carbon and lithium ion conductor LaPO4. Electrochim Acta 156:77–85. doi:10.1016/j.electacta.2015.01.015

    Article  Google Scholar 

  17. Yin Y, Li X, Mao X, Ding X, Yang S (2013) Solid state reaction preparation of LiFePO4/(C+Cu) cathode material and its electrochemical performance. J Mater Sci Technol 29:937–942. doi:10.1016/j.jmst.2013.06.004

    Article  Google Scholar 

  18. Liu S, Yin H, Wang H, He J, Wang H (2014) Synthesis characterization and electrochemical performances of MoO2 and carbon co-coated LiFePO4 cathode materials. Ceram Int 40:3325–3331. doi:10.1016/j.ceramint.2013.09.102

    Article  Google Scholar 

  19. Hibinoa M, Abe K, Mochizuki M, Miyayama M (2004) Amorphous titanium oxide electrode for high-rate discharge and charge. J Power Sources 126:139–143. doi:10.1016/j.jpowsour.2003.08.025

    Article  Google Scholar 

  20. Kim HS, Yu SH, Sung YE, Kang SH (2014) Carbon treated self-ordered TiO2 nanotube arrays with enhanced lithium-ion intercalation performance. J Alloys Compd 597:275–281. doi:10.1016/j.jallcom.2014.02.013

    Article  Google Scholar 

  21. Wu Q, Tran T, Lu W, Wu J (2014) Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries. J Power Sources 258:39–45. doi:10.1016/j.jpowsour.2014.02.047

    Article  Google Scholar 

  22. Prosini PP, Cento C, Pozio A (2014) Lithium-ion batteries based on titanium oxide nanotubes and LiFePO4. J Solid State Electrochem 18:795–804. doi:10.1007/s10008-013-2324-8

    Article  Google Scholar 

  23. Zhang J, Zhang L, Zhang J, Zhang Z, Wu Z (2015) Effect of surface/bulk oxygen vacancies on the structure and electrochemical performance of TiO2 nanoparticles. J Alloys Compd 642:28–33. doi:10.1016/j.jallcom.2015.04.096

    Article  Google Scholar 

  24. Chang HH, Chang CC, Su CY, Wu HC, Yang MH, Wu NL (2008) Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J Power Sources 185:466–472. doi:10.1016/j.jpowsour.2008.07.021

    Article  Google Scholar 

  25. Li XP, Mao J (2015) A Li4Ti5O12–rutile TiO2 nanocomposite with an excellent high rate cycling stability for lithium ion batteries. New J Chem 39:4430–4436. doi:10.1039/c5nj00306g

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Mao, J. Enhanced electrochemical performance of LiFePO4 cathode with carbon-TiO2 hybrid coating. J Mater Sci 51, 10026–10034 (2016). https://doi.org/10.1007/s10853-016-0229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0229-5

Keywords

Navigation