Journal of Materials Science

, Volume 51, Issue 20, pp 9526–9533 | Cite as

Template-sacrificed synthesis of polypyrrole nanofibers for lithium battery

  • Xiujuan Li
  • Dong Fang
  • Yunhe Cao
  • Zhiping Luo
  • Ming Jiang
  • Weilin Xu
  • Chuanxi Xiong
Original Paper


Polypyrrole (PPy) nanofibers have been prepared for the first time using Fe2O3 hollow nanofibers as a sacrificial template, and characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrum, and Raman spectroscopy. The results show that pyrrole was uniformly polymerized around the Fe2O3 and the Fe2O3 was subsequently removed thoroughly with HCl. The electrochemical properties of the PPy nanofibers for lithium battery were investigated with cyclic voltammetry, galvanostatic charge–discharge test, and rate performance. The as-prepared PPy nanofibers composed by nanoparticles exhibited with good rate performance, which delivered a high discharge capacity of 98 mA h g−1 after 50 cycles between 2.0 and 3.8 V at 30 mA g−1.


Fe2O3 Pyrrole Discharge Capacity LiFePO4 Polypyrrole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Natural Science Foundation of China (No. 51201117 and 51503159), the Natural Science Foundation of Hubei Provience (No. 2015CFA123), Educational Commission of Hubei Province of China (No. 144004), and the Scholarship Award for Excellent Doctoral Student Granted by Ministry of Education of China (No. 1343-71134001002).


  1. 1.
    Milczarek G, Inganäs O (2012) Renewable cathode materials from biopolymer/conjugated polymer. Science 335:1468–1471CrossRefGoogle Scholar
  2. 2.
    Novák P, Müller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–281CrossRefGoogle Scholar
  3. 3.
    Huang YH, Park KS, Goodenough JB (2006) Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole. J Electrochem Soc 153:2282–2286CrossRefGoogle Scholar
  4. 4.
    Fedorkova A, Nacher-Alejos A, Gomez-Romero P, Oriňakova R, Kaniansky D (2010) Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries. Electrochim Acta 55:943–947CrossRefGoogle Scholar
  5. 5.
    Qie L, Yuan LX, Zhang WX, Chen WM, Huang YH (2012) Revisit of polypyrrole as cathode material for lithium-ion battery. J Electrochem Soc 159:1624–1629CrossRefGoogle Scholar
  6. 6.
    Sultana I, Rahman MM, Li S, Wang JZ, Wang CY, Wallace GG, Liu HK (2012) Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochim Acta 60:201–205CrossRefGoogle Scholar
  7. 7.
    Yin ZG, Ding YH, Zheng QD, Guan LH (2012) CuO/polypyrrole core-shell nanocomposites as anode materials for lithiumion batteries. Electrochem Commun 20:40–43CrossRefGoogle Scholar
  8. 8.
    Wang G, Yang L, Chen Y, Wang J, Bewlay S, Liu H (2005) An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim Acta 50:4649–4654CrossRefGoogle Scholar
  9. 9.
    Huang YH, Goodenough JB (2008) High-Rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater 20:7237–7241CrossRefGoogle Scholar
  10. 10.
    Boyano I, Blazquez JA, Meatza ID, Bengoechea M, Miguel O, Grande H, Huang Y, Goodenough JB (2010) Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. J Power Sources 195:5351–5359CrossRefGoogle Scholar
  11. 11.
    Noerochim L, Wang JZ, Wexler D, Rahman MM, Chen J, Liu HK (2012) Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V2O5-polypyrrole cathodes. J Mater Chem 22:11159–11165CrossRefGoogle Scholar
  12. 12.
    Ren XZ, Shi C, Zhang PX, Jiang YK, Liu JH, Zhang QL (2012) An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol-gel. Mater Sci Eng, B 177:929–934CrossRefGoogle Scholar
  13. 13.
    Dziewoński PM, Grzeszczuk M (2010) Towards TiO2-conducting polymer hybrid materials for lithium ion batteries. Electrochim Acta 55:3336–3347CrossRefGoogle Scholar
  14. 14.
    Lai C, Li G, Dou Y, Gao X (2010) Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochim Acta 55:4567–4572CrossRefGoogle Scholar
  15. 15.
    Yuan L, Wang J, Chew S, Chen J, Guo Z, Zhao L, Konstantinov K, Liu H (2007) Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery. J Power Sources 174:1183–1187CrossRefGoogle Scholar
  16. 16.
    Cui L, Shen J, Cheng F, Tao Z, Chen J (2011) SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J Power Sources 196:2195–2201CrossRefGoogle Scholar
  17. 17.
    Guo B, Kong Q, Zhu Y, Mao Y, Wang Z, Wan M, Chen L (2011) Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials. Chem Eur J 17:14878–14884CrossRefGoogle Scholar
  18. 18.
    Yin Z, Fan W, Ding Y, Li J, Guan L, Zheng Q (2015) Shell structure control of PPy-modified CuO composite nanoleaves for lithium batteries with improved cyclic performance. ACS Sust Chem Eng 3:507–517CrossRefGoogle Scholar
  19. 19.
    Yin Z, Ding Y, Zheng Q, Guan L (2012) CuO/polypyrrole core-shell nanocomposites as materials for lithium-ion batteries. Electrochem Commun 20:40–43CrossRefGoogle Scholar
  20. 20.
    Kuwabata S, Masui S, Yoneyama H (1999) Charge–discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. Electrochim Acta 44:4593–4600CrossRefGoogle Scholar
  21. 21.
    Chaudhari S, Srinivasan M (2012) 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J Mater Chem 22:23049–23056CrossRefGoogle Scholar
  22. 22.
    Zheng W, Li ZY, Zhang HN, Wang W, Wang Y, Wang C (2009) Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater Res Bull 44:1432–1436CrossRefGoogle Scholar
  23. 23.
    Fan HJ, Knez M, Scholz R, Hesse D, Nielsch K, Zacharias M, Golsele U (2007) Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. Nano Lett 7:993–997CrossRefGoogle Scholar
  24. 24.
    Kanwal F, Siddiqi SA, Batool A, Imran M, Mushtaq W, Jamil T (2011) Synthesis of polypyrrole–ferric oxide (PPy-Fe2O3) composites and study of their structural and conducting properties. Synth Met 161:335–339CrossRefGoogle Scholar
  25. 25.
    Basavaraja S, Balaji DS, Bedre MD (2011) Solvothermal synthesis and characterization of acicular α-Fe2O3 nanoparticles. Bull Mater Sci 34:1313–1317CrossRefGoogle Scholar
  26. 26.
    Qin W, Yang C, Yi R, Gao G (2011) Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. J Nanomater 2010:1–5CrossRefGoogle Scholar
  27. 27.
    Chougule MA, Pawar SG, Godse PR, Mulik RN, Sen S, Patil VB (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1:6–10CrossRefGoogle Scholar
  28. 28.
    Cui CJ, Wu GM, Yang H, She S, Shen J, Zhou B, Zhang Z (2010) A new high-performance cathode material for rechargeable lithium-ion batteries: polypyrrole/vanadium oxide nanotubes. Electrochim Acta 55:8870–8875CrossRefGoogle Scholar
  29. 29.
    Thombare JV, Rath MC, Han SH, Fulari VJ (2013) Synthesis of hydrophilic polypyrrole thin films by Silar method. Mater Phys Mech 16:118–125Google Scholar
  30. 30.
    Zhou C, Zhang YW, Li YY, Liu JP (2013) Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085CrossRefGoogle Scholar
  31. 31.
    Ren XZ, Shi C, Zhang PX, Jiang YK, Liu JH, Zhang QL (2012) An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol-gel. Mater Sci Eng, B 177:929–934CrossRefGoogle Scholar
  32. 32.
    Yang C, Liu P, Wang TM (2011) Well-defined core-shell carbon black/polypyrrole nanocomposites for electrochemical energy storage. ACS Appl Mater Interfaces 3:1109–1114CrossRefGoogle Scholar
  33. 33.
    Zhang X, Zhi WX, Yan B, Xu XX (2012) α-Fe2O3/PPy/Ag functional hybrid nanomaterials with core/shell structure: Synthesis, characterization and catalytic activity. Powder Technol 221:177–182CrossRefGoogle Scholar
  34. 34.
    Wei M, Lu Y (2009) Templating fabrication of polypyrrole nanorods/nanofibers. Synth Met 159:1061–1066CrossRefGoogle Scholar
  35. 35.
    Adhyapak PV, Mulik UP, Amalnerkar DP, Mulla IS (2013) Low temperature synthesis of needle-like α-FeOOH and their conversion into α-Fe2O3 nanorods for humidity sensing application. J Am Ceram Soc 9:731–735CrossRefGoogle Scholar
  36. 36.
    Faria DLAD, Silva SV, Oliveira MTD (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  37. 37.
    Nasibulin AG, Rackauskas S, Jiang H, Tian Y, Mudimela PR, Shandakov SD, Nasibulina LI, Sainio J, Kauppinen EI (2009) Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res 2:373–379CrossRefGoogle Scholar
  38. 38.
    Eid C, Brioude A, Salles V, Plenet JC, Asmar R, Monteil Y, Khoury R, Khoury A, Miele P (2010) Iron-based 1D nanostructures by electrospinning process. Nanotechnology 21:125–701CrossRefGoogle Scholar
  39. 39.
    Cao HQ, Wang GZ, Zhang L, Liang Y, Zhang SC, Zhang XR (2006) Shape and magnetic properties of single-crystalline hematite (α-Fe2O3) nanocrystals. Chem Phys Chem 7:1897–1901Google Scholar
  40. 40.
    Bersani D, Lotticl PP (2000) A micro-Raman study of iron-titanium oxides obtained by sol-gel sythesis. J Mater Sci 35:4301–4305. doi: 10.1023/A:1004884302755 CrossRefGoogle Scholar
  41. 41.
    Han GY, Shi GQ (2006) Electrochemical actuator based on single-layer polypyrrole film. Sens Actuat B—Chem 113:259–264CrossRefGoogle Scholar
  42. 42.
    Duchet J, Legras R, Champagne SD (1998) Chemical synthesis of polypyrrole: structure-properties relationship. Synth Met 98:113–122CrossRefGoogle Scholar
  43. 43.
    Li M, Wei Z, Jiang LJ (2008) Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. Mater Chem 18:2276–2280CrossRefGoogle Scholar
  44. 44.
    Ye SJ, Fang L, Qing XT, Lu Y (2010) Surface-enhanced Raman scattering study of Ag@PPy nanoparticles. J Raman Spectrosc 41:1119–1123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiujuan Li
    • 1
  • Dong Fang
    • 1
  • Yunhe Cao
    • 1
  • Zhiping Luo
    • 2
  • Ming Jiang
    • 1
  • Weilin Xu
    • 1
  • Chuanxi Xiong
    • 1
    • 2
  1. 1.Key Lab of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, College of Material Science and EngineeringWuhan Textile UniversityWuhanPeople’s Republic of China
  2. 2.Department of Chemistry and PhysicsFayetteville State UniversityFayettevilleUSA

Personalised recommendations