Journal of Materials Science

, Volume 51, Issue 20, pp 9440–9454 | Cite as

Probing the structures, stabilities, and electronic properties of neutral and charged carbon-doped lithium CLi n μ (n = 2–20, μ = 0, ±1) clusters from unbiased CALYPSO method

  • Shuai Zhang
  • Yu Zhang
  • Zhiwen Lu
  • Xianbo Shen
  • Genquan Li
  • Feng Peng
  • Xiaoning Bu
Original Paper


The structural and electronic properties of the global minimum structures of neutral, anionic and cationic CLi n μ (n = 2–20; μ = 0, ±1) clusters were systematically investigated using the unbiased CALYPSO structure searching method in conjunction with density functional theory calculations at the B3LYP/6-311+G* level of theory. It was found that the ground-state structures of neural CLi n clusters exhibit linear and planar configurations at n = 2 and 3, respectively, above which three-dimensional configurations are preferred with C and several Li atoms encapsulated into the Li n cages. There were only minor differences in the structure between the neutral and charged CLi n clusters, which is in accordance with the calculated results of ionization potential and electron affinity. However, the addition/removal of one electron to/from the neutral species had a significant effect on the stabilities of the resulting charged clusters. The averaged binding energy indicated that cationic CLi n clusters show relatively higher stabilities. Pronounced odd–even alternations were observed in the fragmentation energy, second-order energy difference and HOMO–LUMO energy gaps. Finally, detailed chemical bonding of the CLi 11 −1 cluster was analyzed based on the AdNDP method, and static polarizabilities of CLi n μ clusters are discussed.


Particle Swarm Optimization Lithium Atom Vertical Ionization Potential Adiabatic Ionization Potential Vertical Detachment Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Nos. 11304167 and 51374132), Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT020), Special Program for Applied Research on Wuper Computation of the NSFC-Guangdong Joint Fund (the second phase).

Supplementary material

10853_2016_189_MOESM1_ESM.doc (626 kb)
Supplementary material 1 (DOC 626 kb)


  1. 1.
    Xu XL, Deng XJ, Xu HG, Zheng WJ (2014) Photoelectron spectroscopy and ab initio calculations of small SinSm(n = 1, 2; m = 1–4) clusters. J Chem Phys 141:124310/1–124310/9Google Scholar
  2. 2.
    Yuan JY, Xu HG, Zheng WJ (2014) Photoelectron spectroscopy and density functional study of ConC2 (n = 1–5) clusters. Phys Chem Chem Phys 16:5434–5439CrossRefGoogle Scholar
  3. 3.
    Pham HT, Duong LV, Nguyen MT (2014) Electronic structure and chemical bonding in the double ring tubular boron clusters. J Phys Chem C 118:24181–24187CrossRefGoogle Scholar
  4. 4.
    Zhang S, Zhang Y, Yang XQ, Lu C, Li GQ, Lu ZW (2015) Systematic theoretical investigation of structures, stabilities and electronic properties of rhodium-doped silicon clusters: Rh2Sinq(n = 1–10; q = 0, ±1). J Mater Sci 50:6180–6196CrossRefGoogle Scholar
  5. 5.
    Xu B, Liu JP, Zhao LL, Yan LL (2013) Theoretical study on the structure and stability of aluminum hydride (AlnH3n) clusters. J Mater Sci 48:2647–2658. doi: 10.1007/s10853-012-7058-y CrossRefGoogle Scholar
  6. 6.
    Wu CH, Kudoa H, Ihle HR (1979) Thermochemical properties of gaseous Li3O and Li2O2. J Chem Phys 70:1815–1820CrossRefGoogle Scholar
  7. 7.
    Lievens P, Thoen P, Bouckaert S, Bouwen W, Vanhoutte F, Navarro-Vázquez A, Schleyer PVR (1999) Ionization potentials of LinO(2 ≤ n≤70) clusters: experiment and theory. J Chem Phys 110:10316–10329CrossRefGoogle Scholar
  8. 8.
    Lievens P, Thoen P, Bouckaert S, Bouwen W, Vanhoutte F, Weidele H, Silverans RE (1999) Evidence for size-dependent electron delocalization in the ionization potentials of lithium monocarbide clusters. Chem Phys Lett 302:571–576CrossRefGoogle Scholar
  9. 9.
    Jemmis ED, Chandrasekhar J, Wuerthwein EU, Schleye PR (1982) Lithiated carbocations. The generation, structure, and stability of CLi5 +. J Am Chem Soc 104:4275–4276CrossRefGoogle Scholar
  10. 10.
    Li Y, Liu YJ, Wu D, Li ZR (2009) Evolution of the structures and stabilities of boron-doped lithium cluster cations: ab initio and DFT studies. Phys Chem Chem Phys 11:5703–5710CrossRefGoogle Scholar
  11. 11.
    Tai TB, Nguyen MT (2012) Electronic structure and thermochemical properties of silicon-doped lithium clusters LinSi0/+, n = 1–8: new insights on their stability. J Comput Chem 33:800–809CrossRefGoogle Scholar
  12. 12.
    Tai TB, Nhat PV, Nguyen MT (2011) Structure and stability of aluminium doped lithium clusters (LinAl0/+, n = 1–8): a case of the phenomenological shell model. Phys Chem Chem Phys 12:11477–11486CrossRefGoogle Scholar
  13. 13.
    Ngan VT, Haeck JD, Le HT, Gopakumar G, Lievens P, Nguyen MT (2009) Experimental detection and theoretical characterization of germanium-doped lithium clusters LinGe(n = 1–7). J Phys Chem A 113:9080–9091CrossRefGoogle Scholar
  14. 14.
    Zhang M, Zhang JF, Feng XJ, Zhang HY, Zhao LX, Luo YH, Cao W (2013) Magnetic superatoms in VLin(n = 1–13) clusters: a first-principles prediction. J Phys Chem A 117:13025–13036CrossRefGoogle Scholar
  15. 15.
    Hou D, Wu D, Sun WM, Li Y, Li ZR (2015) Evolution of structure, stability, and nonlinear optical properties of the heterodinuclear CNLin(n = 1–10) clusters. J Mol Graph Model 59:92–99CrossRefGoogle Scholar
  16. 16.
    Wang YC, Ma YM (2014) Perspective: crystal structure prediction at high pressures. J Chem Phys 140:040901/1–040901/11Google Scholar
  17. 17.
    Lv J, Wang YC, Zhu L, Ma YM (2012) Particle-swarm structure prediction on clusters. J Chem Phys 137:084104/1–084104/8CrossRefGoogle Scholar
  18. 18.
    Zhu L, Liu HY, Pickard CJ, Zou GT, Ma YM (2014) Reactions of xenon with iron and nickel are predicted in the Earth’s inner core. Nat Chem 6:644–648Google Scholar
  19. 19.
    Lu SH, Wang YC, Liu HY, Miao MS, Ma YM (2014) Self-assembled ultrathin nanotubes on diamond (100) surface. Nat Commun 5:3666–3672Google Scholar
  20. 20.
    Wang YC, Lv J, Zhu L, Ma YM (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183:2063–2070CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baron V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez G, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, HeadGordon M, Replogle ES, Pople JA (2009) Gaussian 09, Revision C.01. Gaussian, Inc., WallingfordGoogle Scholar
  22. 22.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Wang Y (1992) Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys Rev B 46:12947–12954CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  25. 25.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  26. 26.
    Tao J, Perdew JP, Staroverov VN, Scueria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401–146404CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Ziesche P, Eschrig H (1991) Electronic structure of solids. Akademie Verlag, Berlin, pp 123–125Google Scholar
  28. 28.
    Machado FBC, Bravo R, Roberto-Neto O (1999) A theoretical characterization of the ground state of LiC, LiC+ and LiC. J Mol Struct THEOCHEM 464:7–14CrossRefGoogle Scholar
  29. 29.
    Boldyrev AI, Simons J, Schleyer PR (1993) Ab initio study of the electronic structures of lithium containing diatomic molecules and ions. J Chem Phys 99:8793–8804CrossRefGoogle Scholar
  30. 30.
    Verhaegen G, Richards WG, Moser CM (1967) Low-lying valence levels of BN and C2. The ground state of BN. J Chem Phys 46:160–164CrossRefGoogle Scholar
  31. 31.
    Herzberg G, Lagerqvist A (1968) A new spectrum associated with diatomic carbon. Can J Phys 46:2363–2373CrossRefGoogle Scholar
  32. 32.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold Company, New York, pp 125–128CrossRefGoogle Scholar
  33. 33.
    Brock LR, Knight AM, Reddic JE, Pilgrim JS, Duncan MA (1997) Photoionization spectroscopy of ionic metal dimers: LiCu and LiAg. J Chem Phys 106:6268–6278CrossRefGoogle Scholar
  34. 34.
    Sarkas HW, Arnold ST, Hendricks JH, Slager VL, Bowen KH (1994) Characterization of the X2u+ state of 7Li2 via negative ion photoelectron spectroscopy. Z Phys D 29:209–212CrossRefGoogle Scholar
  35. 35.
    Lievens P, Thoen P, Bouckaert S, Bouwen W, Vanhoutte F, Weidele H, Silverans RE, Navarro-Vázquez A, Schleyer PVR (1999) Ionization potentials of hypervalent LinC(2 ≤ n ≤ 10). Eur Phys J D 9:289–295CrossRefGoogle Scholar
  36. 36.
    Chandrasekhar J, Pople JA, Seeger R, Seeger U, Schleyer PVR (1982) Remarkable stabilities, geometries, and electronic states of lithium-substituted carbenium ions, CLi3-nHn+(n = 0–3), and the corresponding radicals. J Am Chem Soc 104:3651–3655CrossRefGoogle Scholar
  37. 37.
    Kudo H (1989) Observation of CLi3 and CLi4 in the vapor over Li2C2(s). Chem Lett 9:1611–1614CrossRefGoogle Scholar
  38. 38.
    Kudo H, Wu CH (1993) Vaporization of Li2C2(s) and thermochemical properties of gaseous CLi3, CLi4, and CLi6. J Nucl Mater 201:261–266CrossRefGoogle Scholar
  39. 39.
    Schleyer PVR, Wuerthwein EU, Kaufmann E, Timothy C (1983) CLi5, CLi6, and the related effectively hypervalent first-row molecules, CLi5nH and CLi6nHn. J Am Chem Soc 105:5930–5932CrossRefGoogle Scholar
  40. 40.
    Kudo H (1992) Observation of hypervalent CLi6 by Knudsen-effusion mass spectrometry. Nature 355:432–434CrossRefGoogle Scholar
  41. 41.
    Ivanic J, Marsden CJ (1993) Novel, remarkably stable polylithiated carbon species: CLi8, CLi10 and CLi12. J Am Chem Soc 115:7503–7504CrossRefGoogle Scholar
  42. 42.
    Li XB, Wang HY, Yang XD, Zhu ZH, Tang YJ (2007) Size dependence of the structures and energetic and electronic properties of gold clusters. J Chem Phys 126:084505/1–084505/8Google Scholar
  43. 43.
    Zhou GD, Duan LY (2002) Structural chemistry basis. Peking University Press, Beijing, pp 135–137Google Scholar
  44. 44.
    Alexandrova AN, Boldyrev AI, Li X, Sarkas HW, Hendricks JH, Arnold ST, Bowen KH (2011) Lithium cluster anions: photoelectron spectroscopy and ab initio calculations. J Chem Phys 134:044322/1–044322/8CrossRefGoogle Scholar
  45. 45.
    Kishi R, Kawamata H, Negishi Y, Iwata S, Nakajima A, Kaya K (1997) Geometric and electronic structures of silicon–sodium binary clusters. II. Photoelectron spectroscopy of SinNam cluster anions. J Chem Phys 107:10029–10043CrossRefGoogle Scholar
  46. 46.
    Peppernick SJ, Gunaratne KD, Sayres SG, Castleman AW (2010) Photoelectron imaging of small silicon cluster anions, Sin(n = 2–7). J Chem Phys 132:044302/1–044302/13CrossRefGoogle Scholar
  47. 47.
    Alexandrova AN, Boldyrev AI, Fu YJ, Yang X, Wang XB, Wang LS (2004) Structure of the NaxClx+1(x = 1–4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. J Chem Phys 121:5709–5719CrossRefGoogle Scholar
  48. 48.
    Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217CrossRefGoogle Scholar
  49. 49.
    Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323CrossRefGoogle Scholar
  50. 50.
    Wang HQ, Kuang XY, Li HF (2010) Density functional study of structural and electronic properties of bimetallic copper–gold clusters: comparison with pure and doped gold clusters. Phys Chem Chem Phys 12:5156–5165CrossRefGoogle Scholar
  51. 51.
    Miffre A, Jacquey M, Büchner B, Trénec G, Vigué J (2006) Atom interferometry measurement of the electric polarizability of lithium. Eur Phys J D 38:353–365CrossRefGoogle Scholar
  52. 52.
    Das AK, Thakkar AJ (1998) Static response properties of second-period atoms: coupled cluster calculations. J Phys B 31:2215–2223CrossRefGoogle Scholar
  53. 53.
    Maroulis G (2003) Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide. Chem Phys 291:81–95CrossRefGoogle Scholar
  54. 54.
    Maroulis G, Xenides D (1999) Enhanced linear and nonlinear polarizabilities for the Li4 cluster. How satisfactory is the agreement between theory and experiment for the static dipole polarizability? J Phys Chem A 103:4590–4593CrossRefGoogle Scholar
  55. 55.
    Maroulis G (1999) On the accurate theoretical determination of the static hyperpolarizability of transbutadiene. J Chem Phys 111:583–591CrossRefGoogle Scholar
  56. 56.
    Karamanis P, Maroulis G (2011) An ab initio study of CX3-substitution (X = H, F, Cl, Br, I) effects on the static electric polarizability and hyperpolarizability of diacetylene. J Phys Org Chem 24:588–599CrossRefGoogle Scholar
  57. 57.
    Karamanis P, Maroulis G (2003) Single (C–C) and triple (C ≡ C) bond-length dependence of the static electric polarizability and hyperpolarizability of H–C ≡ C–C ≡ C–H. Chem Phys Lett 376:403–410CrossRefGoogle Scholar
  58. 58.
    Chattaraj PK, Fuentealba P, Jaqueand P, Toro-Labbé A (1999) Validity of the minimum polarizability principle in molecular vibrations and internal rotations: an ab initio SCF study. J Phys Chem A 103:9307–9312CrossRefGoogle Scholar
  59. 59.
    Hohm U (2000) Is there a minimum polarizability principle in chemical reactions ? J Phys Chem A 104:8418–8423CrossRefGoogle Scholar
  60. 60.
    Vasiliev I, Öğüt S, Chelikowsky JR (1997) Ab initio Calculations for the polarizabilities of small semiconductor clusters. Phys Rev Lett 78:4805–4808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsNanyang Normal UniversityNanyangChina
  2. 2.College of Physics and Electronic InformationLuoyang Normal UniversityLuoyangChina

Personalised recommendations