Advertisement

Journal of Materials Science

, Volume 51, Issue 20, pp 9404–9414 | Cite as

Tailoring transport properties through nonstoichiometry in BaTiO3–BiScO3 and SrTiO3–Bi(Zn1/2Ti1/2)O3 for capacitor applications

  • Nitish Kumar
  • David P. Cann
Original Paper

Abstract

The ceramic perovskite solid solutions BaTiO3–BiScO3 (BT–BS) and SrTiO3–Bi(Zn1/2Ti1/2)O3 (ST–BZT) are promising candidates for high-temperature and high-energy density dielectric applications. A-site cation nonstoichiometry was introduced in these two ceramic systems to investigate their effects on the dielectric and transport properties using temperature- and oxygen partial pressure-dependent AC impedance spectroscopy. For p-type BT–BS ceramics, the addition of excess Bi led to effective donor doping along with a significant improvement in insulation properties. A similar effect was observed on introducing Ba vacancies onto the A-sublattice. However, Bi deficiency registered an opposite effect with effective acceptor doping and a deterioration in the bulk resistivity values. For n-type intrinsic ST–BZT ceramics, the addition of excess Sr onto the A-sublattice resulted in a decrease in resistivity values, as expected. Introduction of Sr vacancies or addition of excess Bi on A-site did not appear to affect the insulation properties in air. These results indicate that minor levels of nonstoichiometry can have an important impact on the material properties, and furthermore it demonstrates the difficulties encountered in trying to establish a general model for the defect chemistry of Bi-containing perovskite systems.

Keywords

Perovskite BaTiO3 Barium Titanate Bulk Resistivity Acceptor Doping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research is based upon the work supported by The National Science Foundation under Grant No. DMR-1308032.

References

  1. 1.
    Hennings D (1987) Barium titanate based ceramic materials for dielectric use. Int J High Technol Ceram 3(2):91–111CrossRefGoogle Scholar
  2. 2.
    Aksel E, Jones JL (2010) Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10(3):1935–1954CrossRefGoogle Scholar
  3. 3.
    Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13(1–3):385–392CrossRefGoogle Scholar
  4. 4.
    Merkle R, Maier J (2008) How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew Chem Int Ed 47(21):3874–3894CrossRefGoogle Scholar
  5. 5.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  6. 6.
    Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications. Wiley, ChichesterCrossRefGoogle Scholar
  7. 7.
    Zeb A, Milne S (2015) High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J Mater Sci: Mater Electron 26(12):9243–9255Google Scholar
  8. 8.
    Wada S, Yamato K, Pulpan P, Kumada N, Lee B-Y, Iijima T, Moriyoshi C, Kuroiwa Y (2010) Piezoelectric properties of high Curie temperature barium titanate–bismuth perovskite-type oxide system ceramics. J Appl Phys 108(9):094114CrossRefGoogle Scholar
  9. 9.
    Zhang Q, Li Z, Li F, Xu Z (2011) Structural and dielectric properties of Bi (Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics. J Am Ceram Soc 94(12):4335–4339CrossRefGoogle Scholar
  10. 10.
    Hao H, Liu H, Zhang S, Xiong B, Shu X, Yao Z, Cao M (2012) Fabrication, structure and property of BaTiO3-based dielectric ceramics with a multilayer core–shell structure. Scr Mater 67(5):451–454CrossRefGoogle Scholar
  11. 11.
    Kumar N, Cann DP (2015) Resistivity enhancement and transport mechanisms in (1 − x)BaTiO3xBi(Zn1/2Ti1/2)O3 and (1 − x)SrTiO3xBi(Zn1/2Ti1/2)O3. J Am Ceram Soc 98(8):2548–2555CrossRefGoogle Scholar
  12. 12.
    Dai S, Lu H, Chen F, Chen Z, Ren Z, Ng D (2002) In-doped SrTiO3 ceramic thin films. Appl Phys Lett 80:3545CrossRefGoogle Scholar
  13. 13.
    Denk I, Münch W, Maier J (1995) Partial conductivities in SrTiO3: bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling. J Am Ceram Soc 78(12):3265–3272CrossRefGoogle Scholar
  14. 14.
    Gerblinger J, Meixner H (1991) Fast oxygen sensors based on sputtered strontium titanate. Sens Actuators B: Chem 4(1–2):99–102CrossRefGoogle Scholar
  15. 15.
    Choi SM, Stringer CJ, Shrout TR, Randall CA (2005) Structure and property investigation of a Bi-based perovskite solid solution:(1 − x)Bi(Ni1/2Ti1/2)O3xPbTiO3. J Appl Phys 98(3):034108CrossRefGoogle Scholar
  16. 16.
    Smolenskii G, Isupov V, Agranovskaya A, Popov S (1961) Ferroelectrics with diffuse phase transitions. Soviet Phys Solid State 2(11):2584–2594Google Scholar
  17. 17.
    Raengthon N, Cann DP (2012) High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications. J Electroceram 28(2–3):165–171CrossRefGoogle Scholar
  18. 18.
    Dittmer R, Jo W, Damjanovic D, Rödel J (2011) Lead-free high-temperature dielectrics with wide operational range. J Appl Phys 109:034107CrossRefGoogle Scholar
  19. 19.
    Huang C-C, Cann DP, Tan X, Vittayakorn N (2007) Phase transitions and ferroelectric properties in BiScO3–Bi(Zn1/2Ti1/2)O3–BaTiO3 solid solutions. J Appl Phys 102(4):044103CrossRefGoogle Scholar
  20. 20.
    Ogihara H, Randall CA, Trolier-McKinstry S (2009) High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J Am Ceram Soc 92(8):1719–1724CrossRefGoogle Scholar
  21. 21.
    Fujii I, Nakashima K, Kumada N, Wada S (2012) Structural, dielectric, and piezoelectric properties of BaTiO3–Bi(Ni1/2Ti1/2)O3 ceramics. J Ceram Soc Jpn 120(1397):30–34CrossRefGoogle Scholar
  22. 22.
    Wang Y, Chen X, Zhou H, Fang L, Liu L, Zhang H (2013) Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system. J Alloy Compd 551:365–369CrossRefGoogle Scholar
  23. 23.
    Huang C-C (2008) Structure and piezoelectric properties of lead-free bismuth-based perovskite solid solutions. ProQuestGoogle Scholar
  24. 24.
    Choi DH, Baker A, Lanagan M, Trolier-McKinstry S, Randall C (2013) Structural and dielectric properties in (1 − x)BaTiO3xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. j Am Ceram Soc 96(7):2197–2202CrossRefGoogle Scholar
  25. 25.
    Kumar N, Ionin A, Ansell T, Kwon S, Hackenberger W, Cann D (2015) Multilayer ceramic capacitors based on relaxor BaTiO3–Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl Phys Lett 106(25):252901CrossRefGoogle Scholar
  26. 26.
    Takenaka T, K-i Maruyama, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9S):2236–2239CrossRefGoogle Scholar
  27. 27.
    Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19(1):113–126CrossRefGoogle Scholar
  28. 28.
    Kumar N, Patterson EA, Frömling T, Cann DP (2016) Conduction mechanisms in BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. J Am Ceram Soc. doi: 10.1111/jace.14313 Google Scholar
  29. 29.
    Kumar N, Patterson EA, Frömling T, Cann DP (2016) DC-bias dependent impedance spectroscopy of BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. J Mater Chem C 4(9):1782–1786CrossRefGoogle Scholar
  30. 30.
    Prasertpalichat S, Cann DP (2016) Hardening in non-stoichiometric (1 − x)Bi0.5Na0.5TiO3xBaTiO3 lead-free piezoelectric ceramics. J Mater Sci 51(1):476–486. doi: 10.1007/s10853-015-9235-2 CrossRefGoogle Scholar
  31. 31.
    Raengthon N, Sebastian T, Cumming D, Reaney IM, Cann DP (2012) BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J Am Ceram Soc 95(11):3554–3561CrossRefGoogle Scholar
  32. 32.
    Hirose N, West AR (1996) Impedance spectroscopy of undoped BaTiO3 ceramics. J Am Ceram Soc 79(6):1633–1641CrossRefGoogle Scholar
  33. 33.
    Irvine JT, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138CrossRefGoogle Scholar
  34. 34.
    Smyth DM (2000) The defect chemistry of metal oxides. Oxford University Press, Oxford, p 304. ISBN-10: 0195110145; ISBN-13: 9780195110142Google Scholar
  35. 35.
    Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76(1):241–267CrossRefGoogle Scholar
  36. 36.
    Kleemann W (2006) The relaxor enigma—charge disorder and random fields in ferroelectrics. In: Lang SB, Chan HLW (eds) Frontiers of ferroelectricity. Springer, New York, pp 129–136Google Scholar
  37. 37.
    Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys: Condens Matter 15(9):R367Google Scholar
  38. 38.
    Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95(1):1–26CrossRefGoogle Scholar
  39. 39.
    Ogihara H, Randall CA, Trolier-McKinstry S (2009) Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J Am Ceram Soc 92(1):110–118CrossRefGoogle Scholar
  40. 40.
    Bharadwaja S, Kim J, Ogihara H, Cross L, Trolier-McKinstry S, Randall C (2011) Critical slowing down mechanism and reentrant dipole glass phenomena in (1 − x)BaTiO3xBiScO3 (0.1 ≤ x ≤ 0.4): the high energy density dielectrics. Phys Rev B 83(2):024106CrossRefGoogle Scholar
  41. 41.
    Bharadwaja S, Trolier-McKinstry S, Cross L, Randall C (2012) Reentrant dipole glass properties in (1 − x)BaTiO3xBiScO3, 0.1 ≤ x ≤ 0.4. Appl Phys Lett 100(2):022906CrossRefGoogle Scholar
  42. 42.
    Vance ER, Hanna JV, Hadley J (2012) Cation vacancies in perovskites doped with La and Gd. Adv Appl Ceram 111(1–2):94–98CrossRefGoogle Scholar
  43. 43.
    Yoo H-I, Song C-R, Lee D-K (2002) BaTiO3−δ: defect structure, electrical conductivity, chemical diffusivity, thermoelectric power, and oxygen nonstoichiometry. J Electroceram 8(1):5–36CrossRefGoogle Scholar
  44. 44.
    Li M, Zhang H, Cook SN, Li L, Kilner JA, Reaney IM, Sinclair DC (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem Mater 27(2):629–634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Materials Science, School of Mechanical, Industrial, and Manufacturing EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations