Skip to main content

Advertisement

Log in

Characterization of the photoactivity of nanotube layers grown on Ti–35Nb and Ti–35Nb–4Sn alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 nanotube arrays, grown on titanium metal by anodizing, have been widely used as a photoelectrode. Titanium alloys have also been anodized to obtain doped TiO2 nanotubes or as oxide heterojunctions with enhanced photoactivity, in some cases with absorption extending over the region of visible light. In this paper, samples of Ti–35Nb and Ti–35Nb–4Sn (wt%) alloys were anodized in a dilute HF electrolyte to grow a self-ordered nanotube layer and were heat treated for crystallization of anatase phase of TiO2. Characterization by X-ray diffraction and photoelectron spectroscopy revealed that the oxide layers were composed of anatase-TiO2/Nb2O5 and anatase-TiO2/Nb2O5/SnO2 phases. TiO2/Nb2O5 nanotubes showed a photoresponse compared with TiO2 nanotube arrays, with photoactivity extending to the region of visible light as a consequence of a band gap energy lower than that of TiO2. A band gap energy of 2.5 eV was calculated by fitting data from the diffuse reflectance spectroscopy (Tauc plot) using the Kubelka–Munk function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure  6
Figure 7

Similar content being viewed by others

References

  1. Asoh H, Ono S, Staikov G (eds) (2007) Electrocrystallization in Nanotechnology. Wiley VCH, Weinheim, pp 138–166

    Book  Google Scholar 

  2. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18

    Article  Google Scholar 

  3. Minagar S, Berndt CC, Wang J, Ivanova E, Wen C (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8:2875–2888

    Article  Google Scholar 

  4. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R 74:377–406

    Article  Google Scholar 

  5. Zhou X, Nguyen NT, Özkan S, Schmuki P (2014) Anodic TiO2 nanotube layers: why does self-organized growth occur—a mini review. Electrochem Commun 46:157–162

    Article  Google Scholar 

  6. Ferreira CP, Gonçalves MC, Caram R, Bertazzoli R, Rodrigues CA (2013) Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys. Appl Surf Sci 285:226–234

    Article  Google Scholar 

  7. Kim J-J, Byeon I-S, Brantley WA, Choe H-C (2015) Highly ordered nanotubular film formation on Ti–25Nb–xZr and Ti–25Ta–xHf. Thin Solid Films 596:94–100

    Article  Google Scholar 

  8. Oh S, Jin S (2006) Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater Sci Eng C 26:1301–1306

    Article  Google Scholar 

  9. Masahashi N, Mizukoshi Y, Semboshi S, Ohtsu N, Jung TK, Hanada S (2010) Photo-induced characteristics of a Ti–Nb–Sn biometallic alloy with low Young’s modulus. Thin Solid Films 519:276–283

    Article  Google Scholar 

  10. Cremasco A, Lopes ESN, Bertazzoli R, Caram R (2016) Application of coupled substrate aging and TiO2 nanotube crystallization heat treatments in cold rolled Ti–Nb–Sn alloys. J Mater Sci. doi:10.1007/s10853-016-9935-2

    Google Scholar 

  11. Verissimo NC, Cremasco A, Rodrigues CA, Bertazzoli R, Caram R (2014) In situ characterization of the effects of Nb and Sn on the anatase-rutile transition in TiO2 nanotubes using high-temperature X-ray diffraction. Appl Surf Sci 307:372–38129

    Article  Google Scholar 

  12. Yang M, Jha H, Liu N, Schmuki P (2011) Increased photocurrent response in Nb–doped TiO2 nanotubes. J Mater Chem 21:15205–15208

    Article  Google Scholar 

  13. Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T (2005) A transparent metal: Nb–doped anatase TiO2. Appl Phys Lett 86:252101

    Article  Google Scholar 

  14. Lim J, Monllor-Satoca D, Jang JS, Lee S, Choi W (2014) Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Appl Catal B 152–153:233–240

    Article  Google Scholar 

  15. Yang M, Kim D, Jha H, Lee K, Paul J, Schmuki P (2011) Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem Commun 47:2032–2034

    Article  Google Scholar 

  16. Luo H, Song W, Hoertz PG, Hanson K, Ghosh R, Rangan S, Brennaman MK, Concepcion JJ, Binstead RA, Bartynski RA, Lopez R, Meyer TJ (2013) A sensitized Nb2O5 photoanode for hydrogen production in a dye-sensitized photoelectrosynthesis cell. Chem Mater 25:122–131

    Article  Google Scholar 

  17. Zhao Y, Eley C, Hu JP, Foord JS, Ye L, He HY, Tsang SCE (2012) Shape-dependent acidity and photocatalytic activity of Nb2O5 nanocrystals with an active TT (001) surface. Angew Chem Int Ed 51:3846–3849

    Article  Google Scholar 

  18. Ohuchi T, Miyatake T, Hitomi Y, Tanaka T (2007) Liquid phase photooxidation of alcohol over niobium oxide without solvents. Catal Today 120:233–239

    Article  Google Scholar 

  19. Prado AGS, Bolzon LB, Pedroso CP, Moura AO, Costa LL (2008) Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl Catal B 82:219–224

    Article  Google Scholar 

  20. Lin HY, Yang HC, Wang WL (2011) Synthesis of mesoporous Nb2O5 photocatalysts with Pt, Au, Cu and NiO cocatalyst for water splitting. Catal Today 174:106–113

    Article  Google Scholar 

  21. Yan J, Wu G, Guan N, Li L (2014) Nb2O5/TiO2 heterojunctions: synthesis strategy and photocatalytic activity. Appl Catal B 152–153:280–288

    Article  Google Scholar 

  22. Aegerter MA (2001) Sol-gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol Energy Mater Sol Cells 68:401–422

    Article  Google Scholar 

  23. Weibel A, Bouchet R, Savin SLP, Chadwick AV, Lippens PE, Womes M, Knauth P (2006) Local atomic and electronic structure in nanocrystalline Sn-doped anatase TiO2. Chem Phys Chem 7:2377–2383

    Google Scholar 

  24. Rani RA (2014) PhD Thesis, School of Electrical and Computer Engineering, RMIT University, Australia

  25. Schultze JW, Lohrengel MM (2000) Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta 45:2499–2513

    Article  Google Scholar 

  26. Proslier T, Zasadzinski J, Cooley L, Pellin M, Norem J, Elam J (2009) Tunneling study of SRF cavity-grade niobium. IEEE Trans Appl Supercond 19:1404–1408

    Article  Google Scholar 

  27. Zhuiykov S, Kats E, Kalantar-Zadeh K (2013) Synthesis and nanoscale investigation of the electrical properties of Quasi-2D semiconductor Nb2O5 nanosheets. IEEE Trans Nanotechnol 12:641–648

    Article  Google Scholar 

  28. Othman MA, Amat NF, Ahmad BH, Rajan J (2014) Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method. J Phys Conf Series. doi:10.1088/1742-6596/495/1/012027

    Google Scholar 

  29. Jang SH, Choe HC, Ko YM, Brantley WA (2009) Electrochemical characteristics of nanotubes formed on Ti–Nb alloys. Thin Solid Films 517:5038–5043

    Article  Google Scholar 

  30. Packer KJ, Muetterties EL (1963) Nature of niobium(V) fluoride species in solution. J Am Chem Soc 85:3035–3036

    Article  Google Scholar 

  31. Zhu Z, Cheng CY (2011) Solvent extraction technology for the separation and purification of niobium and tantalum: a review. Hydrometallurgy 107:1–12

    Article  Google Scholar 

  32. Agulyansky A, Agulyansky L, Travkin VF (2004) Liquid–liquid extraction of tantalum with 2-octanol. Chem Eng Process 43:1231–1237

    Article  Google Scholar 

  33. Pan L, Wang Y, Wang X, Qu HY, Zhao JP, Li Y, Gavrilyuk A (2014) Hydrogen photochromism in Nb2O5 powders. Phys Chem Chem Phys 16:20828–20833

    Article  Google Scholar 

  34. PV Education (2015) Spectral Irradiance. http://pveducation.org/pvcdrom/properties-of-sunlight/spectral-irradiance. Accessed 23 July 2015

  35. Michalow KA, Flak D, Heel A, Parlinska-Wojtan M, Rekas M, Graule T (2012) Effect of Nb doping on structural, optical and photocatalytic properties of flame-made TiO2 nanopowder. Environ Sci Pollut Res 19:3696–3708

    Article  Google Scholar 

  36. Nowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSi using diffuse reflectance spectroscopy. Rev Sci Instr 80:46107–46110

    Article  Google Scholar 

  37. Philips-Invernizzi B, Dupont D, Caze C (2001) Bibliographical review for reflectance of diffusing media. Opt Eng 40:1082–1092

    Article  Google Scholar 

  38. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol–Gel Sci Technol 61:1–7

    Article  Google Scholar 

  39. Radecka M, Rekas M, Trenczek-Zajac A, Zakrzewska K (2008) Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J Power Sources 181:46–55

    Article  Google Scholar 

  40. Wang MH, Guo RJ, Tso TL, Perng TP (1995) Effects of sintering on the photoelectrochemical properties of Nb–doped TiO2 electrodes. Int J Hydrog Energy 20:555–560

    Article  Google Scholar 

  41. Mattsson A, Leideborg M, Larsson K, Westin G, Österlund L (2006) Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J Phys Chem B 110:1210–1220

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Ana Flavia Nogueira for providing the equipment for the IPCE analysis and the National Laboratory of Synchrotron Radiation (LNLS) for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodnei Bertazzoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veríssimo, N.C., Figueiredo, R.S., de Oliveira, H.G. et al. Characterization of the photoactivity of nanotube layers grown on Ti–35Nb and Ti–35Nb–4Sn alloys. J Mater Sci 51, 9384–9393 (2016). https://doi.org/10.1007/s10853-016-0184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0184-1

Keywords

Navigation