Skip to main content

Advertisement

Log in

Thin film nanoporous electrodes for the selective catalysis of oxygen in abiotically catalysed micro glucose fuel cells

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Selective reduction of oxygen is an important property of fuel cells designed to operate in a mixed fuel environment containing both oxidizing and reducing reactants. This would be of particular importance in the design of a long-lasting energy supply unit powering implantable microsystems and running from exogeneous chemicals that is abundant in the body (such as glucose and oxygen). This paper presents the development of a nanoporous electrode for oxygen reduction in the presence of glucose. The electrode was fabricated by e-beam deposition of palladium thin films on porous ceramic aluminium oxide (AAO) substrates with a pore size of 100 and 200 nm, respectively. The porous nature of the electrodes improved the catalytic properties by increasing the real surface area close to 100 times the geometric surface area. At a dissolved physiological oxygen (DO) concentration of 2 ppm, the maximum exchange current density was found to be 2.9 × 10−3 ± 0.5  × 10−3 μA cm−2, whereas the potential reduction due to the addition of 5 mM glucose was about 20.6 ± 16.1 mV. The Tafel slopes were measured to be about 60 mV per decade. After running for 21 h in a physiological saline solution with 2 ppm DO and 3 mM glucose, the reduction in the electrode operational potential was −0.13 mV h−1 under a load current density of 4.4 μA cm−2. These results suggest that nanoporous AAO cathodes coated with palladium offer a reasonable catalytic performance with a good selectivity towards oxygen in the presence of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Fig. 10

Similar content being viewed by others

References

  1. Larsson B, Elmqvist H, Ryden L, Schuller H (2003) PACE 26:114

    Article  Google Scholar 

  2. Polikov VS, Tresco PA, Reichert WM (2005) J Neurosci Methods 148(1):1

    Article  Google Scholar 

  3. Clark G, Cohen L,Busby P (2003) Implant device

  4. Harrison REA (2008) In: IEEE Intl. symposium on circuits and systems (ISCAS 2008)

  5. Wise K, Anderson D, Hetke J, Kipke D, Najafi K (2004) In Proceedings of the IEEE 92(1):76

  6. Thomas C (2000) Neurophysiol 84(1):591–595

    Google Scholar 

  7. Grayson ACR, Shawgo RS, Johnson AM, Flynn NT, Li YW, Cima MJ, Langer R (2004) In: Proceedings of the IEEE 92(1):6

  8. Johannessen E, Krushinitskaya O, Sokolov A, Hafliger P, Hoogerwerf A, Hinderling C, Kautio K, Lenkkeri J, Esko Strommer E, Kondratyev V, Tannessen T, Mollnes T, Jakobsen H, Zimmer E, Akselsen B (2010) J Diabetes Sci Technol 4:882

    Article  Google Scholar 

  9. Mallela VS, Ilankumaran V, Rao N (2004) Indian Pacing Electrophysiol J 4(4):201

    Google Scholar 

  10. Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) In: Proceedings of the IEEE 96(9):1457

  11. Beeby SP, Tudor MJ, White NM (2006) Meas Sci Technol 17(12):R175

    Article  Google Scholar 

  12. Yang Y, Wei XJ, Liu J (2007) J Phys D-Appl Phys 40(18):5790

    Article  Google Scholar 

  13. Lay-Ekuakille A, Vendramin G, Trotta A, Mazzotta G (2009) In: Medical Measurements and Applications, MeMeA 2009. IEEE International Workshop on 2009:1–4

  14. Nielsen ME, Reimers CE, White HK, Sharma S, Girguis PR (2008) Energy Environ Sci 1(5):584

    Article  Google Scholar 

  15. Holmes DE, Bond DR, ONeil RA, Reimers CE, Tender LR, Lovley DR (2004) Microbial Ecol 48(2):178

    Article  Google Scholar 

  16. Lovley DR (2006) Curr Opin Biotechnol 17(3):327–332

    Article  Google Scholar 

  17. Franks AE, Nevin KP (2010) Energies 3:899

    Article  Google Scholar 

  18. Wang HY, Bernarda A, Huang CY, Lee DJ, Chang JS (2011) Bioresour Technol 102(1):235

    Article  Google Scholar 

  19. Ivanov I, Vidakovic-Koch T, Sundmacher K (2010) Energies 3(4):803

    Article  Google Scholar 

  20. Kerzenmacher S, Ducree J, Zengerle R, Stetten FV (2008) J Power Sour 182:1

    Article  Google Scholar 

  21. Kerzenmacher S, Kraling U, Metz T, Zengerle R, von Stetten F (2011) J Power Sour 196(3):1264

    Article  Google Scholar 

  22. Kerzenmacher S, Kraling U, Schroeder M, Bramer R, Zengerle R, von Stetten F (2010) J Power Sour 195(19):6524

    Article  Google Scholar 

  23. Kloke A, Biller B, Kerzenmacher S,Kraling U, Zengerle R,Stetten FV(2008) In: Proceeding of Eurosensors pp. 1416–1419

  24. Kerzenmacher S, Ducree J, Zengerle R, Stetten Fv (2008) J Power Sour 182:66

    Article  Google Scholar 

  25. Kerzenmacher S,Sumbharaju R, Ducree Zengerle JR,Stetten FV(2007) The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 125–128

  26. Johansson M, Ekedahl LG (2001) Appl Surf Sci 173(1–2):122

    Article  Google Scholar 

  27. Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota KI (2004) Electrochem Commun 6(2):105

    Article  Google Scholar 

  28. Sun W, Hsu A, Chen R (2011) J Power Sour 196(10):4491

    Article  Google Scholar 

  29. Kost KM, Bartak DE, Kazee B, Kuwana T (1990) Anal Chem 62(2):151

    Article  Google Scholar 

  30. Huang KT, Kuo PC, Yao YD (2009) Thin Solid Films 517(11):3243

    Article  Google Scholar 

  31. Yoo SH, Liu L, Park S (2009) J Colloid Interface Sci 339(1):183

    Article  Google Scholar 

  32. T. Zhao, Micro Fuel Cells - Principles and Applications (Elsevier Inc., San Diego, 2009)

  33. Trasatti S, Petrii OA (1991) Pure Appl. Chem. 63(5):711

    Article  Google Scholar 

  34. Grden M, Lukaszewski M, Jerkiewicz G, Czerwinski A (2008) Electrochimica Acta 53(26):7583

    Article  Google Scholar 

  35. Seland F, Tunold R, Harrington DA (2006) Electrochimica Acta 51(18):3827

    Article  Google Scholar 

  36. Bevington PR, Robinson DK (1969) Data reduction and error analysis physical science, 3rd edn. McGraw Hill, New York

    Google Scholar 

  37. Losiewicz B, Birry L, Lasia A (2007) J Electroanal Chem 611(1–2):26

  38. O’Hayre R, Cha SW, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, Hoboken

    Google Scholar 

  39. Wu S, Brault P, Wang C (2010) J Optoelectron Adv Mater 12:451

    Google Scholar 

  40. Huajun Z, Jinhuan Z, Zhenghai G, Wei W (2008) J Magn Mag Mater 320(3–4):565

    Article  Google Scholar 

  41. Srinivasan S (2006) Fuel cells, from fundamental and applications. Springer, US

    Google Scholar 

  42. Okamoto H, Aso T (1967) Jpn J Appl Phys 6(6):779

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank technical staff and colleagues at University College of Southeast Norway (HSN) and UC Berkeley for their assistance in this work. The work was supported by the Norwegian PhD Network on Nanotechnology for Microsystems, The Norwegian Centre for International Cooperation in Higher Education (SIU), The Ministry of Church and Education and The Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uyen P. Do.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, U.P., Seland, F., Maharbiz, M.M. et al. Thin film nanoporous electrodes for the selective catalysis of oxygen in abiotically catalysed micro glucose fuel cells. J Mater Sci 51, 9095–9107 (2016). https://doi.org/10.1007/s10853-016-0162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0162-7

Keywords

Navigation