Skip to main content

Incorporation of epoxy resin and carbon nanotube into silica/siloxane network for improving thermal properties

Abstract

Thermal properties of epoxy resin (E) were improved by its incorporation into silica/siloxane network in the presence of carbon nanotube (CNT). At first, CNT xerogel (CNTX)/E composite was prepared by curing E in the presence of CNTX. Then, E is modified with (3-isocyanatopropyl)triethoxysilane (IE) or tetraethyl orthosilicate (TEOS) oligomer (TE) for its incorporation into a hybrid network of CNT-containing silica/siloxane network. For this purpose, a bifunctional modifier of 1,1′-(hexane-1,6-diyl)bis(3-(3-(trimethoxysilyl)propyl)urea) (HDBTMSPU) was synthesized. CNTX was prepared by incorporation of HDBTMSPU-modified CNT (FCNT) into silica/siloxane network by using HDBTMSPU and TEOS. IE (TE), FGO, HDBTMSPU, and TEOS were also used in the preparation of hybrid products. Three types of composites were compared in their thermal degradation temperature and char content. Functionalization of CNT was confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman, X-ray diffraction (XRD), and thermogravimetric analysis (TGA) results. Xerogel formation was proved by Raman, XRD, and N2 adsorption and desorption isotherms. TGA results showed that the hybrid of IE, FCNT, and silica/siloxane network shows higher thermal properties. Char residue is increased 17.54 % by only 4 wt% loading of FCNT in IE resin (IEGX1). Formation of xerogel network around CNT was observed by scanning and transmission electron microscopies.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1

    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  Google Scholar 

  2. 2

    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

  3. 3

    Hu CY, Xu YJ, Duo SW, Zhang RF, Li MS (2009) Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J Chin Chem Soc 56:234–239

    Article  Google Scholar 

  4. 4

    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. J Iran Chem Soc 9:877–887

    Article  Google Scholar 

  5. 5

    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H, Hemmati M (2012) Effect of carbon nanotubes on the kinetics of in situ polymerization of methyl methacrylate. NANO 7:1250003

    Article  Google Scholar 

  6. 6

    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Properties of PMMA/carbon nanotubes nanocomposites prepared by “grafting through” method. Polym Compos 33:215–224

    Article  Google Scholar 

  7. 7

    Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz Z (2014) Reverse atom transfer radical polymerization of methyl methacrylate in the presence of Azo-functionalized carbon nanotubes: a grafting from approach. Colloid Polym Sci 292:2971–2981

    Article  Google Scholar 

  8. 8

    Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2015) Functionalization of carbon nanotubes by furfuryl alcohol moieties for preparation of novolac phenolic resin composites with high carbon yield values. Colloid Polym Sci 293:3623–3631

    Article  Google Scholar 

  9. 9

    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix grafted multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetics study. Int J Chem Kinet 44:555–569

    Article  Google Scholar 

  10. 10

    Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomasf S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294

    Article  Google Scholar 

  11. 11

    Meeks AC (1974) Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins. Polymer 15:675–681

    Article  Google Scholar 

  12. 12

    Levchik SV, Weil ED (2004) Thermal decomposition, combustion and flame-retardancy of epoxy resins review of the recent literature. Polym Int 53(12):1901–1929

    Article  Google Scholar 

  13. 13

    Levchik SV, Piotrowski A, Weil ED, Yao Q (2005) New developments in flame retardancy of epoxy resins. Polym Degrad Stabil 88:57–62

    Article  Google Scholar 

  14. 14

    Wang JS, Liu Y, Zhao HB, Liu J, Wang DY, Song YP, Wang YZ (2009) Metal compound enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym Degrad Stabil 94(4):625–631

    Article  Google Scholar 

  15. 15

    Dogana M, Unlu SM (2014) Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polym Degrad Stabil 99:12–17

    Article  Google Scholar 

  16. 16

    Perrin FX, Chaoui N, Margaillan A (2009) Effects of octa (3-chloroammoniumpropyl)octasilsesquioxane on the epoxy self-polymerisation and epoxy–amine curing. Thermochim Acta 491:97–102

    Article  Google Scholar 

  17. 17

    Chiang CL, Chang RC, Chiu YC (2007) Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol-gel method. Thermochim Acta 453:97–104

    Article  Google Scholar 

  18. 18

    Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803

    Article  Google Scholar 

  19. 19

    Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL (2010) Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phys Chem Solids 71:539–543

    Article  Google Scholar 

  20. 20

    Hrubesh LW (1990) Aerogels: the world’s lightest solids. Chem Ind 24:824–827

    Google Scholar 

  21. 21

    Sobani M, Haddadi-Asl V, Salami-Kalajahi M, Roghani-Mamaqani H, Mirshafiei-Langari SA, Khezri K (2013) Grafting through approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization. J Sol-Gel Sci Technol 66:337–344

    Article  Google Scholar 

  22. 22

    Siouffi AM (2003) Silica gel-based monoliths prepared by the sol–gel method: facts and figures. J Chromatogr A 1000:801–818

    Article  Google Scholar 

  23. 23

    Kajihara K (2013) Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. J Asian Ceramic Soc 1:121–133

    Article  Google Scholar 

  24. 24

    Sobani M, Haddadi-Asl V, Mirshafiei-Langari SA, Salami-Kalajahi M, Roghani-Mamaqani H, Khezri K (2014) A kinetics study on the in situ reversible addition-fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Des Monom Polym 17:245–254

    Article  Google Scholar 

  25. 25

    Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K (2013) Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polym Compos 34:1648–1654

    Article  Google Scholar 

  26. 26

    Wen FJ, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater 8:1667–1681

    Article  Google Scholar 

  27. 27

    Wu SY, Yuen SM, Ma CCM, Chiang CL, Huang YL, Wu H, Teng CC, Yang CC, Wei MH (2010) Preparation, morphology, and properties of silane-modified MWCNT/epoxy composites. J Appl Polym Sci 115:3481–3488

    Article  Google Scholar 

  28. 28

    Wu SY, Yuen SM, Ma CCM, Huang YL, Teng CC (2011) Molecular motion, morphology and properties of 3-isocyanato-propyltriethoxysilane-modified multi-walled carbon nanotube/epoxy composites. Micro Nano Lett 6(6):463–467

    Article  Google Scholar 

  29. 29

    Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Organic-inorganic nanohybrids of novolac phenolic resin and carbon nanotube: high carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Micropor Mesopor Mater 224:58–67

    Article  Google Scholar 

  30. 30

    Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: high carbon yields by resin modification and its incorporation into aerogel network. Polym Degrad Stabil 124:1–14

    Article  Google Scholar 

  31. 31

    Wang X, Xing W, Song L, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206:4778–4784

    Article  Google Scholar 

  32. 32

    Wu HL, Yang YT, Ma CCM, Kuan HC (2005) Molecular mobility of free-radical-functionalized carbon-nanotube/siloxane/poly(urea urethane) nanocomposites. J Polym Sci A Polym Chem 43:6084–6094

    Article  Google Scholar 

  33. 33

    Qian X, Song L, Hu Y, Yuen RKK (2013) Thermal degradation and flammability of novel organic/inorganic epoxy hybrids containing organophosphorus-modified oligosiloxane. Thermochim Acta 552:87–97

    Article  Google Scholar 

  34. 34

    Qian X, Song L, Yu B, Wang B, Yuan B, Shi Y, Hu Y, Yuen RKK (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1:6822–6830

    Article  Google Scholar 

  35. 35

    Hu S, Xu Y, Jiang D, Wu D, Sun Y, Deng F (2009) Moisture-resistant protective films for UV-light filter based on diisocyanate-bridged polysilsesquioxanes. Thin Solid Films 518:348–354

    Article  Google Scholar 

  36. 36

    Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Article  Google Scholar 

  37. 37

    Roghani-Mamaqani H, Hadadi-Asl V (2014) In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: grafting from hydroxyl group. Polym Compos 10:386–395

    Article  Google Scholar 

  38. 38

    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res 21:333–344

    Article  Google Scholar 

  39. 39

    Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638

    Article  Google Scholar 

  40. 40

    Wan YJ, Tang LC, Gong LX, Yan D, Li YB, Wu LB, Jiang JX, Lai GQ (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480

    Article  Google Scholar 

  41. 41

    Chiang CL, Ma CCM (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method. Europ Polym J 38:2219–2224

    Article  Google Scholar 

  42. 42

    Alyamac E, Gua H, Soucek MD, Qiub S, Buchheit RG (2012) Alkoxysilane oligomer modified epoxide primers. Prog Organ Coat 74:67–81

    Article  Google Scholar 

  43. 43

    Roghani-Mamaqani H (2015) Surface-initiated ATRP of styrene from epoxy groups of graphene nanolayers: twofold polystyrene chains and various graft densities. RSC Adv 5:53357–53368

    Article  Google Scholar 

  44. 44

    Roghani-Mamaqani H, Haddadi-Asl V, Mortezaei M, Khezri K (2014) Furfuryl alcohol functionalized graphene nanosheets for synthesis of high carbon yield novolak composites. J Appl Polym Sci 131:40273

    Article  Google Scholar 

  45. 45

    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Edge-functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polym Int 63:1912–1923

    Article  Google Scholar 

  46. 46

    Roghani-Mamaqani H, Haddadi-Asl V, Sobhkhiz Z, Ghaderi-Ghahfarrokhi M (2015) Grafting poly (methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Colloid Polym Sci 293:735–750

    Article  Google Scholar 

  47. 47

    Wang Z, Wei P, Qian Y, Liu J (2014) The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos B 60:341–349

    Article  Google Scholar 

  48. 48

    George GA, Clarke PC, Jhon NS, Friend G (1991) Real time monitoring of the cure reaction of a TGDDM/DDS epoxy resin using fiber optic FT-IR. J Appl Polym Sci 42:643–657

    Article  Google Scholar 

  49. 49

    Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors 10:684–696

    Article  Google Scholar 

  50. 50

    Yu T, Jiang N, Li Y (2014) Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Comp Sci Tech 104:26–33

    Article  Google Scholar 

  51. 51

    Wu SY, Yuen SM, Ma CCM, Huang YL, Teng CC (2011) Molecular motion, morphology and properties of 3-isocyanato-propyltriethoxysilane modified multi-walled carbon nanotube/epoxy composites. Micro Nano Lett 6:463–467

    Article  Google Scholar 

  52. 52

    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M (2015) Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: heterogeneities in chains and graft densities. Polym Eng Sci 55:1720–1732

    Article  Google Scholar 

  53. 53

    Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238

    Article  Google Scholar 

  54. 54

    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M, Sobani M, Mirshafiei-Langari SA (2015) Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iran Polym J 24:51–62

    Article  Google Scholar 

  55. 55

    Roghani-Mamaqani H, Khezri K (2016) A grafting from approach to graft polystyrene chains to the surface of graphene nanolayers by RAFT polymerization: various graft densities from hydroxyl groups. Appl Surf Sci 360:373–382

    Article  Google Scholar 

  56. 56

    Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814

    Article  Google Scholar 

  57. 57

    Jorio A, Filho AGS, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Pimenta MA, Hafner JH, Lieber CM, Saito R (2002) G-band Raman spectra of isolated single wall carbon nanotube: diameter and chirality dependence. Mat Res Soc Sympos Proc 706:Z6.19.1–6

  58. 58

    Qi X, Zhai G, Liang J, Ma S, Liu X, Xu B (2014) Preparation and characterization of SiC@CNT coaxial nanocables using CNTs as a template. Cryst Eng Commun 16:9697–9703

    Article  Google Scholar 

  59. 59

    Li X, Chen Y, Mo S, Jia L, Shao X (2014) Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid. Thermochim Acta 595:6–10

    Article  Google Scholar 

  60. 60

    Yua W, Fu J, Dong X, Chen L, Shi L (2014) A graphene hybrid material functionalized with POSS: synthesis and applications in low-dielectric epoxy composites. Compos Sci Technol 92:112–119

    Article  Google Scholar 

  61. 61

    Lin J, Zhang P, Zheng C, Wua X, Maoa T, Zhu M, Wanga H, Feng D, Qiana S, Cai X (2014) Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl Surf Sci 316:114–123

    Article  Google Scholar 

  62. 62

    Yuen SM, Ma CCM, Chiang CL, Chang JA, Huang SW, Chen SC, Chuang CY, Yang CC, Wei MH (2007) Silane-modified MWCNT/PMMA composites preparation, electrical resistivity, thermal conductivity and thermal stability. Comp Part A 38:2527–2535

    Article  Google Scholar 

  63. 63

    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298

    Article  Google Scholar 

  64. 64

    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Polystyrene grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Adv 4:24439–24452

    Article  Google Scholar 

  65. 65

    Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K (2013) In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: kinetic study and investigation of thermal properties. J Polym Res 20:163

    Article  Google Scholar 

  66. 66

    Sarawade PB, Kim JK, Kim HK, Kim HT (2007) High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl Surf Sci 254:574–579

    Article  Google Scholar 

  67. 67

    Zhang X, Liu J, Xu B, Su Y, Luo Y (2011) Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon 49:1884–1893

    Article  Google Scholar 

  68. 68

    Dong L, Yang Q, Xu C, Li Y, Yang D, Hou F, Yin H, Kang F (2015) Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon 90:164–171

    Article  Google Scholar 

  69. 69

    Li WC, Lu AH, Schmidt W, Schüth F (2005) High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem Eur J 11:1658–1664

    Article  Google Scholar 

  70. 70

    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

  71. 71

    Yuan FY, Zhang HB, Li X, Ma HL, Li XZ, Yu ZZ (2014) In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 68:653–661

    Article  Google Scholar 

Download references

Acknowledgements

National Elites Foundation is greatly appreciated for its financial support (Grant Number: 15/76508).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hossein Roghani-Mamaqani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najafi-Shoa, S., Roghani-Mamaqani, H., Salami-Kalajahi, M. et al. Incorporation of epoxy resin and carbon nanotube into silica/siloxane network for improving thermal properties. J Mater Sci 51, 9057–9073 (2016). https://doi.org/10.1007/s10853-016-0158-3

Download citation

Keywords

  • Epoxy Matrix
  • Char Residue
  • Radial Breathing Mode
  • HMDI
  • Hexamethylene Diisocyanate