Skip to main content
Log in

Improvements of lanthanum complex on the thermal-oxidative stability of natural rubber

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mixed antioxidants composed of antioxidant IPPD and novel rare earth lanthanum complex were used as an additive to prepare natural rubber (NR) samples. The variations of macro-properties, surface characterizations, and internal groups were investigated by mechanical testing, X-ray photoelectron spectroscopy, and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FT-IR), respectively, to study the thermal-oxidative stability of NR. The thermal-oxidative degradation kinetic parameters were determined by analyzing the thermogravimetric curves at different heating rates with two model-free methods, Kissinger method and Flynn–Wall–Ozawa method. The results all showed that, compared with pure antioxidant IPPD, the same mass of mixed antioxidants could indeed improve the thermal-oxidative stability of NR. Furthermore, based on the TGA/FT-IR results and quantum mechanics simulations, the autocatalytic, free radical chain reaction mechanism for the thermal-oxidative aging of NR was clarified, and the different function mechanisms of antioxidants IPPD and p-ASALa were also discussed. Except for functioning as a labile-hydrogen donor which is similar to antioxidant IPPD in protecting NR against autoxidation, p-ASALa has strong coordination abilities and large coordination numbers, resulting in the high efficiency in enhancing the thermal-oxidative stability of NR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Scheme 1
Scheme 2
Scheme 3
Figure 11

Similar content being viewed by others

References

  1. Mita I, Jellinek HHG (1987) Aspects of degradation and stabilization of polymers. Elsevier, New York.

    Google Scholar 

  2. Ramesan MT, Kumar TM, Alex R, Kuriakose B (2002) Investigations on the addition of styrene butadiene rubber in natural rubber and dichlorocarbene modified styrene butadiene rubber blends. J Mater Sci 37:109–116. doi:10.1023/A:1013106227399

    Article  Google Scholar 

  3. Komethi M, Othman N, Ismail H, Sasidharan S (2012) Comparative study on natural antioxidant as an aging retardant for natural rubber vulcanizates. J Appl Polym Sci 124:1490–1500.

    Article  Google Scholar 

  4. Wu W, Zeng X, Li H, Lai X, Li F, Guo J (2014) Synthesis and characterization of a novel macromolecular hindered phenol antioxidant and its thermo-oxidative aging resistance for natural rubber. J Macromol Sci B 53:1244–1257.

    Article  Google Scholar 

  5. Zheng W, Liu L, Zhao X, He J, Wang A, Chan TW, Wu S (2015) Effects of lanthanum complex on the thermo-oxidative aging of natural rubber. Polym Degrad Stab 120:377–383.

    Article  Google Scholar 

  6. Luo Y, Yang C, Chen B, Xu K, Zhong J, Peng Z, Lv Z, Wang Q (2013) Thermal degradation of epoxidized natural rubber in presence of neodymium stearate. J Rare Earths 31:526–530.

    Article  Google Scholar 

  7. Fang L, Song Y, Zhu X, Zheng Q (2009) Influence of lanthanum stearate as a co-stabilizer on stabilization efficiency of calcium/zinc stabilizers to polyvinyl chloride. Polym Degrad Stab 94:845–850.

    Article  Google Scholar 

  8. Qiu GM, Zhang M, Zhou LX, Nakakita SS, Inoue SI, Okamoto H (2001) Thermal oxidation resistance of rare earth-containing composite elastomer. J Rare Earths 19:192–197.

    Google Scholar 

  9. Xie C, Jia Z, Luo Y, Jia D (2011) Antioxidant effect of Sm(III) complex with 2-mercaptobenzimidazole in natural rubber vulcanizates. Acta Polym Sin. doi:10.3724/SP.J.1105.2011.10090.

    Google Scholar 

  10. Xie C, Jia Z, Jia D, Luo Y, You C (2010) The effect of Dy(III) complex with 2-mercaptobenzimidazole on the thermo-oxidation aging behavior of natural rubber vulcanizates. Int J Polym Mater 59:663–679.

    Article  Google Scholar 

  11. Shelton JR (1957) Aging and oxidation of elastomers. Rubber Chem Technol 30:1251–1290.

    Article  Google Scholar 

  12. ISO 188 (2011) Rubber vulcanized or thermoplastic—accelerated ageing and heat resistance tests. ISO Copyright Office, Switzerland.

    Google Scholar 

  13. ISO 37 (2011) Rubber vulcanized or thermoplastic—determination of tensile stress–strain properties. ISO Copyright Office, Switzerland.

    Google Scholar 

  14. http://accelrys.com/products/materials-studio/index.html.

  15. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.

    Article  Google Scholar 

  16. Sutton CC, Franks GV, da Silva G (2012) First principles pKa calculations on carboxylic acids using the SMD solvation model: effect of thermodynamic cycle model chemistry and explicit solvent molecules. J Phys Chem B 116:11999–12006.

    Article  Google Scholar 

  17. Ho J (2015) Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials? Phys Chem Chem Phys 17:2859–2868.

    Article  Google Scholar 

  18. McGrath MJ, Kuo IF, Ngouana WB, Ghogomu JN, Mundy CJ, Marenich AV, Cramer CJ, Truhlar DG, Siepmann JI (2013) Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models. Phys Chem Chem Phys 15:13578–13585.

    Article  Google Scholar 

  19. Zhao F, Zhao S, Weina B, Kuhn W, Jian Y (2007) Characterization of elastomer networks by NMR parameters: part I. Sulfur-cured NR networks. Kautsch Gummi Kunstst (KGK) 60:554–558.

    Google Scholar 

  20. Anca-Couce A, Zobel N, Berger A, Behrendt F (2012) Smouldering of pine wood: kinetics and reaction heats. Combust Flame 159:1708–1719.

    Article  Google Scholar 

  21. Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL (2003) Thermal degradation of poly (methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab 79:271–281.

    Article  Google Scholar 

  22. Li KY, Huang X, Fleischmann C, Rein G, Ji J (2014) Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy Fuel 28:6130–6139.

    Article  Google Scholar 

  23. Chen M, Ao NJ, Zhang BL, Den CM, Qian HL, Zhou HL (2005) Comparison and evaluation of the thermooxidative stability of medical natural rubber latex products prepared with a sulfur vulcanization system and a peroxide vulcanization system. J Appl Polym Sci 98:591–597.

    Article  Google Scholar 

  24. Chen J, Zhang W, Li X, Chen Y (2014) Thermal degradation kinetics of a linked polyurethane acrylate film. J Test Eval 42:1–7.

    Google Scholar 

  25. Martins MA, Moreno RM, McMahan CM, Brichta JL, Goncalves PDS, Mattoso LH (2008) Thermooxidative study of raw natural rubber from Brazilian IAC 300 series clones. Thermochim Acta 474:62–66.

    Article  Google Scholar 

  26. Flynn JH, Wall LA (1966) A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett 4:323–328.

    Article  Google Scholar 

  27. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706.

    Article  Google Scholar 

  28. Lu L, Yu H, Wang S, Zhang Y (2009) Thermal degradation behavior of styrene-butadiene-styrene tri-block copolymer/multiwalled carbon nanotubes composites. J Appl Polym Sci 112:524–531.

    Article  Google Scholar 

  29. Budrugeac P (2000) The evaluation of the non-isothermal kinetic parameters of the thermal and thermal-oxidative degradation of polymers and polymeric materials: its use and abuse. Polym Degrad Stab 71:185–187.

    Article  Google Scholar 

  30. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886.

    Article  Google Scholar 

  31. Xu J, Zhang A, Zhou T, Cao X, Xie Z (2007) A study on thermal oxidation mechanism of styrene-butadiene-styrene block copolymer (SBS). Polym Degrad Stab 92:1682–1691.

    Article  Google Scholar 

  32. Pisharath S, Ang HG (2007) Thermal decomposition kinetics of a mixture of energetic polymer and nitramine oxidizer. Thermochim Acta 459:26–33.

    Article  Google Scholar 

  33. Nakazono T, Matsumoto A (2010) Mechanical properties and thermal aging behavior of styrene-butadiene rubbers vulcanized using liquid diene polymers as the plasticizer. J Appl Polym Sci 118:2314–2320.

    Google Scholar 

  34. Cunneen JI (1968) Oxidative aging of natural rubber. Rubber Chem Technol 41:182–208.

    Article  Google Scholar 

  35. Bevilacqua EM, English ES (1961) The scission step in hevea oxidation. J Polym Sci 49:495–505.

    Article  Google Scholar 

  36. Li GY, Koenig JL (2003) FTIR imaging of oxidation of polyisoprene 2. The role of N-phenyl-N′-dimethyl-butyl-p-phenylenediamine antioxidant. Polym Degrad Stab 81:377–385.

    Article  Google Scholar 

  37. Li A (2009) Aging and life prediction of rubber. Rubber Ref 3:2–77.

    Google Scholar 

  38. Hawkins WL (1984) Polymers/properties and applications. Polymer degradation and stabilization, vol 8. Springer, Berlin, pp 45–46.

    Book  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China under Grant No. 51473012 and the Major Research plan from the Ministry of Science and Technology of China under Grant No. 2014BAE14B01 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sizhu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Jia, Z., Zhang, Z. et al. Improvements of lanthanum complex on the thermal-oxidative stability of natural rubber. J Mater Sci 51, 9043–9056 (2016). https://doi.org/10.1007/s10853-016-0157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0157-4

Keywords

Navigation